TensorFlow 1 version | View source on GitHub |
Type specification for tf.experimental.Optional.
Inherits From: TypeSpec
tf.OptionalSpec( element_spec ) For instance, tf.OptionalSpec can be used to define a tf.function that takes tf.experimental.Optional as an input argument:
@tf.function(input_signature=[tf.OptionalSpec(tf.TensorSpec(shape=(), dtype=tf.int32, name=None))])def maybe_square(optional):if optional.has_value():x = optional.get_value()return x * xreturn -1optional = tf.experimental.Optional.from_value(5)print(maybe_square(optional))tf.Tensor(25, shape=(), dtype=int32)
Attributes | |
|---|---|
element_spec | A nested structure of TypeSpec objects that represents the type specification of the optional element. |
value_type | The Python type for values that are compatible with this TypeSpec. In particular, all values that are compatible with this TypeSpec must be an instance of this type. |
Methods
from_value
@staticmethodfrom_value( value )
is_compatible_with
is_compatible_with( spec_or_value ) Returns true if spec_or_value is compatible with this TypeSpec.
most_specific_compatible_type
most_specific_compatible_type( other ) Returns the most specific TypeSpec compatible with self and other.
| Args | |
|---|---|
other | A TypeSpec. |
| Raises | |
|---|---|
ValueError | If there is no TypeSpec that is compatible with both self and other. |
__eq__
__eq__( other ) Return self==value.
__ne__
__ne__( other ) Return self!=value.
TensorFlow 1 version
View source on GitHub