View source on GitHub |
Compute the Moore-Penrose pseudo-inverse of one or more matrices.
tf.linalg.pinv( a, rcond=None, validate_args=False, name=None ) Calculate the generalized inverse of a matrix using its singular-value decomposition (SVD) and including all large singular values.
The pseudo-inverse of a matrix A, is defined as: 'the matrix that 'solves' [the least-squares problem] A @ x = b,' i.e., if x_hat is a solution, then A_pinv is the matrix such that x_hat = A_pinv @ b. It can be shown that if U @ Sigma @ V.T = A is the singular value decomposition of A, then A_pinv = V @ inv(Sigma) U^T. [(Strang, 1980)][1]
This function is analogous to numpy.linalg.pinv. It differs only in default value of rcond. In numpy.linalg.pinv, the default rcond is 1e-15. Here the default is 10. * max(num_rows, num_cols) * np.finfo(dtype).eps.
Returns | |
|---|---|
a_pinv | (Batch of) pseudo-inverse of input a. Has same shape as a except rightmost two dimensions are transposed. |
Raises | |
|---|---|
TypeError | if input a does not have float-like dtype. |
ValueError | if input a has fewer than 2 dimensions. |
Examples
import tensorflow as tf import tensorflow_probability as tfp a = tf.constant([[1., 0.4, 0.5], [0.4, 0.2, 0.25], [0.5, 0.25, 0.35]]) tf.matmul(tf.linalg.pinv(a), a) # ==> array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]], dtype=float32) a = tf.constant([[1., 0.4, 0.5, 1.], [0.4, 0.2, 0.25, 2.], [0.5, 0.25, 0.35, 3.]]) tf.matmul(tf.linalg.pinv(a), a) # ==> array([[ 0.76, 0.37, 0.21, -0.02], [ 0.37, 0.43, -0.33, 0.02], [ 0.21, -0.33, 0.81, 0.01], [-0.02, 0.02, 0.01, 1. ]], dtype=float32) References
[1]: G. Strang. 'Linear Algebra and Its Applications, 2nd Ed.' Academic Press, Inc., 1980, pp. 139-142.
View source on GitHub