View source on GitHub |
Class that encapsulates a computation graph of Keras operations.
Inherits From: Operation
tf.keras.Function( inputs, outputs, name=None ) You can use a Function to capture the computation graph linking some input tensors to some output tensors, and reapply the same computation on new inputs.
A Function is similar to a Functional Model, with the difference that it is stateless (it does not track state variables) and does not implement the Layer API.
Example:
input_1 = keras.KerasTensor(shape=(None, 2, 3)) input_2 = keras.KerasTensor(shape=(None, 2, 3)) x = input_1 + input_2 output = keras.ops.sigmoid(x) fn = keras.Function(inputs=[input_1, input_2], outputs=output) input_1_val = np.random.random((4, 2, 3)) input_2_val = np.random.random((4, 2, 3)) output_val = fn([input_1_val, input_2_val]) Methods
call
call( inputs ) Computes output tensors for new inputs.
compute_output_spec
compute_output_spec( inputs ) from_config
@classmethodfrom_config( config )
Creates a layer from its config.
This method is the reverse of get_config, capable of instantiating the same layer from the config dictionary. It does not handle layer connectivity (handled by Network), nor weights (handled by set_weights).
| Args | |
|---|---|
config | A Python dictionary, typically the output of get_config. |
| Returns | |
|---|---|
| A layer instance. |
get_config
get_config() Returns the config of the object.
An object config is a Python dictionary (serializable) containing the information needed to re-instantiate it.
quantized_call
quantized_call( *args, **kwargs ) symbolic_call
symbolic_call( *args, **kwargs ) __call__
__call__( *args, **kwargs ) Call self as a function.
View source on GitHub