TensorFlow 1 version | View source on GitHub |
Type specification for a tf.RaggedTensor.
Inherits From: TypeSpec
tf.RaggedTensorSpec( shape=None, dtype=tf.dtypes.float32, ragged_rank=None, row_splits_dtype=tf.dtypes.int64, flat_values_spec=None ) Args | |
|---|---|
shape | The shape of the RaggedTensor, or None to allow any shape. If a shape is specified, then all ragged dimensions must have size None. |
dtype | tf.DType of values in the RaggedTensor. |
ragged_rank | Python integer, the number of times the RaggedTensor's flat_values is partitioned. Defaults to shape.ndims - 1. |
row_splits_dtype | dtype for the RaggedTensor's row_splits tensor. One of tf.int32 or tf.int64. |
flat_values_spec | TypeSpec for flat_value of the RaggedTensor. It shall be provided when the flat_values is a CompositeTensor rather then Tensor. If both dtype and flat_values_spec and are provided, dtype must be the same as flat_values_spec.dtype. (experimental) |
Attributes | |
|---|---|
dtype | The tf.dtypes.DType specified by this type for the RaggedTensor.
|
flat_values_spec | The TypeSpec of the flat_values of RaggedTensor. |
ragged_rank | The number of times the RaggedTensor's flat_values is partitioned. Defaults to
|
row_splits_dtype | The tf.dtypes.DType of the RaggedTensor's row_splits.
|
shape | The statically known shape of the RaggedTensor.
|
value_type | The Python type for values that are compatible with this TypeSpec. In particular, all values that are compatible with this TypeSpec must be an instance of this type. |
Methods
from_value
@classmethodfrom_value( value )
is_compatible_with
is_compatible_with( spec_or_value ) Returns true if spec_or_value is compatible with this TypeSpec.
most_specific_compatible_type
most_specific_compatible_type( other ) Returns the most specific TypeSpec compatible with self and other.
| Args | |
|---|---|
other | A TypeSpec. |
| Raises | |
|---|---|
ValueError | If there is no TypeSpec that is compatible with both self and other. |
__eq__
__eq__( other ) Return self==value.
__ne__
__ne__( other ) Return self!=value.
TensorFlow 1 version
View source on GitHub