TensorFlow 1 version | View source on GitHub |
Stacks a list of rank-R tensors into one rank-(R+1) tensor.
tf.stack( values, axis=0, name='stack' ) Packs the list of tensors in values into a tensor with rank one higher than each tensor in values, by packing them along the axis dimension. Given a list of length N of tensors of shape (A, B, C);
if axis == 0 then the output tensor will have the shape (N, A, B, C). if axis == 1 then the output tensor will have the shape (A, N, B, C). Etc.
For example:
x = tf.constant([1, 4])y = tf.constant([2, 5])z = tf.constant([3, 6])tf.stack([x, y, z])<tf.Tensor: shape=(3, 2), dtype=int32, numpy=array([[1, 4],[2, 5],[3, 6]], dtype=int32)>
tf.stack([x, y, z], axis=1)
This is the opposite of unstack. The numpy equivalent is np.stack
np.array_equal(np.stack([x, y, z]), tf.stack([x, y, z]))True
Args | |
|---|---|
values | A list of Tensor objects with the same shape and type. |
axis | An int. The axis to stack along. Defaults to the first dimension. Negative values wrap around, so the valid range is [-(R+1), R+1). |
name | A name for this operation (optional). |
Returns | |
|---|---|
output | A stacked Tensor with the same type as values. |
Raises | |
|---|---|
ValueError | If axis is out of the range [-(R+1), R+1). |
TensorFlow 1 version
View source on GitHub