View source on GitHub |
Computes the categorical hinge metric between y_true and y_pred.
Inherits From: MeanMetricWrapper, Mean, Metric
tf.keras.metrics.CategoricalHinge( name='categorical_hinge', dtype=None ) Args | |
|---|---|
name | (Optional) string name of the metric instance. |
dtype | (Optional) data type of the metric result. |
Example:
m = keras.metrics.CategoricalHinge()m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]])m.result().numpy()1.4000001m.reset_state()m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]],sample_weight=[1, 0])m.result()1.2
Attributes | |
|---|---|
dtype | |
variables | |
Methods
add_variable
add_variable( shape, initializer, dtype=None, aggregation='sum', name=None ) add_weight
add_weight( shape=(), initializer=None, dtype=None, name=None ) from_config
@classmethodfrom_config( config )
get_config
get_config() Return the serializable config of the metric.
reset_state
reset_state() Reset all of the metric state variables.
This function is called between epochs/steps, when a metric is evaluated during training.
result
result() Compute the current metric value.
| Returns | |
|---|---|
| A scalar tensor, or a dictionary of scalar tensors. |
stateless_reset_state
stateless_reset_state() stateless_result
stateless_result( metric_variables ) stateless_update_state
stateless_update_state( metric_variables, *args, **kwargs ) update_state
update_state( y_true, y_pred, sample_weight=None ) Accumulate statistics for the metric.
__call__
__call__( *args, **kwargs ) Call self as a function.
View source on GitHub