tf.compat.v1.executing_eagerly

Checks whether the current thread has eager execution enabled.

Eager execution is typically enabled via tf.compat.v1.enable_eager_execution, but may also be enabled within the context of a Python function via tf.contrib.eager.py_func.

When eager execution is enabled, returns True in most cases. However, this API might return False in the following use cases.

tf.compat.v1.enable_eager_execution()

General case:

print(tf.executing_eagerly()) True

Inside tf.function:

@tf.function def fn():   with tf.init_scope():     print(tf.executing_eagerly())   print(tf.executing_eagerly()) fn() True False

Inside tf.function after tf.config.run_functions_eagerly(True) is called:

tf.config.run_functions_eagerly(True) @tf.function def fn():   with tf.init_scope():     print(tf.executing_eagerly())   print(tf.executing_eagerly()) fn() True True tf.config.run_functions_eagerly(False)

Inside a transformation function for tf.dataset:

def data_fn(x):   print(tf.executing_eagerly())   return x dataset = tf.data.Dataset.range(100) dataset = dataset.map(data_fn) False

True if the current thread has eager execution enabled.