![]() |
Apply boolean mask to tensor.
tf.compat.v1.boolean_mask( tensor, mask, name='boolean_mask', axis=None )
Numpy equivalent is tensor[mask]
.
In general, 0 < dim(mask) = K <= dim(tensor)
, and mask
's shape must match the first K dimensions of tensor
's shape. We then have: boolean_mask(tensor, mask)[i, j1,...,jd] = tensor[i1,...,iK,j1,...,jd]
where (i1,...,iK)
is the ith True
entry of mask
(row-major order). The axis
could be used with mask
to indicate the axis to mask from. In that case, axis + dim(mask) <= dim(tensor)
and mask
's shape must match the first axis + dim(mask)
dimensions of tensor
's shape.
See also: tf.ragged.boolean_mask
, which can be applied to both dense and ragged tensors, and can be used if you need to preserve the masked dimensions of tensor
(rather than flattening them, as tf.boolean_mask
does).
Examples:
# 1-D example tensor = [0, 1, 2, 3] mask = np.array([True, False, True, False]) tf.boolean_mask(tensor, mask) # [0, 2] # 2-D example tensor = [[1, 2], [3, 4], [5, 6]] mask = np.array([True, False, True]) tf.boolean_mask(tensor, mask) # [[1, 2], [5, 6]]
Returns | |
---|---|
(N-K+1)-dimensional tensor populated by entries in tensor corresponding to True values in mask . |
Raises | |
---|---|
ValueError | If shapes do not conform. |