Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • DSA
  • Interview Problems on Hash
  • Practice Hash
  • MCQs on Hash
  • Hashing Tutorial
  • Hash Function
  • Index Mapping
  • Collision Resolution
  • Open Addressing
  • Separate Chaining
  • Quadratic probing
  • Double Hashing
  • Load Factor and Rehashing
  • Advantage & Disadvantage
Open In App
Next Article:
Sorting by combining Insertion Sort and Merge Sort algorithms
Next article icon

Union and Intersection of two Linked List using Merge Sort

Last Updated : 10 Sep, 2024
Comments
Improve
Suggest changes
Like Article
Like
Report

Given two singly Linked Lists, create union and intersection lists that contain the union and intersection of the elements present in the given lists. Each of the two lists contains distinct node values.

Note: The order of elements in output lists doesn’t matter.

Examples:

Input:
head1: 10 -> 15 -> 4 -> 20
head2: 8 -> 4 -> 2 -> 10
Output:
Union List: 2 -> 4 -> 8 -> 10 -> 15 -> 20
Intersection List: 4 -> 10
Explanation: In these two lists 4 and 10 nodes are common. The union lists contain all the unique nodes of both lists.

Input:
head1 : 1 -> 2 -> 3 -> 4
head2 : 3 -> 4 -> 8 -> 10
Output:
Union List: 1 -> 2 -> 3 -> 4 -> 8 -> 10
Intersection List: 3 -> 4
Explanation: In these two lists 3 and 4 nodes are common. The union lists contain all the unique nodes of both lists.

Approach:

The idea is to sort the given lists using merge sort, then we linearly search both sorted lists to obtain the union and intersection. By Keeping two pointers (initially pointing to the first node of the respective lists) compare the node values :

  • If the values are equal, add the value to both the union and intersection lists, then move both pointers to the next node.
  • else if the values are not equal, insert the smaller value into the union list and move the corresponding pointer to the next node.
  • If one of the pointers becomes null, traverse the remaining nodes of the other list and add them to the union list.
C++
// C++ program to find union and intersection of // two unsored linked lists in O(nlogn) time.  #include <iostream> using namespace std;  class Node {   public:     int data;     Node *next;      Node(int x) {         data = x;         next = nullptr;     } };  // Function to split the singly // linked list into two halves Node *split(Node *head) {     Node *fast = head;     Node *slow = head;      // Move fast pointer two steps and slow pointer     // one step until fast reaches the end     while (fast != nullptr && fast->next != nullptr) {         fast = fast->next->next;         if (fast != nullptr) {             slow = slow->next;         }     }      // Split the list into two halves     Node *temp = slow->next;     slow->next = nullptr;     return temp; }  // Function to merge two sorted singly linked lists Node *merge(Node *head1, Node *head2) {      // If either list is empty, return the other list     if (head1 == nullptr) {         return head2;     }     if (head2 == nullptr) {         return head1;     }      // Pick the smaller value between head1 and head2 nodes     if (head1->data < head2->data) {          // Recursively merge the rest of the lists and         // link the result to the current node         head1->next = merge(head1->next, head2);         return head1;     }     else {          // Recursively merge the rest of the lists         // and link the result to the current node         head2->next = merge(head1, head2->next);         return head2;     } }  // Function to perform merge sort on a singly linked list Node *MergeSort(Node *head) {      // Base case: if the list is empty or has only one node,     // it's already sorted     if (head == nullptr || head->next == nullptr) {         return head;     }      // Split the list into two halves     Node *second = split(head);      // Recursively sort each half     head = MergeSort(head);     second = MergeSort(second);      // Merge the two sorted halves     return merge(head, second); }  // Function to get the union of two linked lists Node *getUnion(Node *head1, Node *head2) {      // Initialize head to a dummy node with data -1     Node *head = new Node(-1);     Node *tail = head;      // Merge both sorted lists to create the union list     while (head1 != nullptr && head2 != nullptr) {          // Skip duplicates in the first list         while (head1->next != nullptr                && head1->data == head1->next->data) {             head1 = head1->next;         }                // Skip duplicates in the second list         while (head2->next != nullptr                 && head2->data == head2->next->data) {             head2 = head2->next;         }          if (head1->data < head2->data) {                        // Add head1 data to union list             tail->next = new Node(head1->data);             tail = tail->next;             head1 = head1->next;         }         else if (head1->data > head2->data) {                        // Add head2 data to union list             tail->next = new Node(head2->data);             tail = tail->next;             head2 = head2->next;         }         else {                        // Add common data to union list             tail->next = new Node(head1->data);             tail = tail->next;             head1 = head1->next;             head2 = head2->next;         }     }      // Add remaining nodes from head1 or head2     while (head1 != nullptr) {          // Skip duplicates in the first list         while (head1->next != nullptr                 && head1->data == head1->next->data) {             head1 = head1->next;         }         tail->next = new Node(head1->data);         tail = tail->next;         head1 = head1->next;     }      while (head2 != nullptr) {          // Skip duplicates in the second list         while (head2->next != nullptr                && head2->data == head2->next->data) {             head2 = head2->next;         }         tail->next = new Node(head2->data);         tail = tail->next;         head2 = head2->next;     }      // Skip the dummy node     return head->next; }  // Function to get the intersection of two linked lists Node *getIntersection(Node *head1, Node *head2) {        // Initialize head to a dummy node with data -1     Node *head = new Node(-1);     Node *tail = head;      // Traverse both sorted lists to find common elements     while (head1 != nullptr && head2 != nullptr) {                // Skip duplicates in the first list         while (head1->next != nullptr                 && head1->data == head1->next->data) {             head1 = head1->next;         }                // Skip duplicates in the second list         while (head2->next != nullptr                 && head2->data == head2->next->data) {             head2 = head2->next;         }          if (head1->data < head2->data) {             head1 = head1->next;         }         else if (head1->data > head2->data) {             head2 = head2->next;         }         else {                        // Common element found             tail->next = new Node(head1->data);             tail = tail->next;             head1 = head1->next;             head2 = head2->next;         }     }      // Skip the dummy node     return head->next; }  void printList(Node *head) {     Node *curr = head;     while (curr != nullptr) {         cout << curr->data << " ";         curr = curr->next;     }     cout << endl; }  int main() {        // Create two hard-coded singly linked lists:     // List 1: 10 -> 15 -> 4 -> 20     Node *head1 = new Node(10);     head1->next = new Node(15);     head1->next->next = new Node(4);     head1->next->next->next = new Node(20);      // List 2: 8 -> 4 -> 2 -> 10     Node *head2 = new Node(8);     head2->next = new Node(4);     head2->next->next = new Node(2);     head2->next->next->next = new Node(10);      // Sort the linked lists using mergeSort     head1 = MergeSort(head1);     head2 = MergeSort(head2);      	//head1 and head2 List becomes sorted     Node *unionList = getUnion(head1, head2);     Node *intersectionList = getIntersection(head1, head2);      cout << "Union: ";     printList(unionList);      cout << "Intersection: ";     printList(intersectionList);      return 0; } 
C
// C program to find union and intersection of // two unsored linked lists in O(nlogn) time.  #include <stdio.h> #include <stdlib.h>  struct Node {     int data;     struct Node *next; };  struct Node *createNode(int data);  // Function to split the singly linked list into two halves struct Node *split(struct Node *head) {     struct Node *fast = head;     struct Node *slow = head;      // Move fast pointer two steps and slow pointer     // one step until fast reaches the end     while (fast != NULL && fast->next != NULL) {         fast = fast->next->next;         if (fast != NULL) {             slow = slow->next;         }     }      // Split the list into two halves     struct Node *temp = slow->next;     slow->next = NULL;     return temp; }  // Function to merge two sorted singly linked lists struct Node *merge(struct Node *head1, struct Node *head2) {        // If either list is empty, return the other list     if (head1 == NULL)         return head2;     if (head2 == NULL)         return head1;      // Pick the smaller value between head1 and head2 nodes     if (head1->data < head2->data) {                // Recursively merge the rest of the lists and         // link the result to the current node         head1->next = merge(head1->next, head2);         return head1;     }     else {                // Recursively merge the rest of the lists         // and link the result to the current node         head2->next = merge(head1, head2->next);         return head2;     } }  // Function to perform merge sort on a singly linked list struct Node *mergeSort(struct Node *head) {        // Base case: if the list is empty or has only one node,     // it's already sorted     if (head == NULL || head->next == NULL)         return head;      // Split the list into two halves     struct Node *second = split(head);      // Recursively sort each half     head = mergeSort(head);     second = mergeSort(second);      // Merge the two sorted halves     return merge(head, second); }  // Function to get the union of two linked lists struct Node *getUnion(struct Node *head1, struct Node *head2) {        // Initialize head to a dummy node with data -1     struct Node *head = createNode(-1);     struct Node *tail = head;      // Merge both sorted lists to create the union list     while (head1 != NULL             && head2 != NULL) {                // Skip duplicates in the first list         while (head1->next != NULL                 && head1->data == head1->next->data) {             head1 = head1->next;         }                // Skip duplicates in the second list         while (head2->next != NULL                 && head2->data == head2->next->data) {             head2 = head2->next;         }          if (head1->data < head2->data) {                        // Add head1 data to union list             tail->next = createNode(head1->data);             tail = tail->next;             head1 = head1->next;         }         else if (head1->data > head2->data) {                        // Add head2 data to union list             tail->next = createNode(head2->data);             tail = tail->next;             head2 = head2->next;         }         else {                        // Add common data to union list             tail->next = createNode(head1->data);             tail = tail->next;             head1 = head1->next;             head2 = head2->next;         }     }      // Add remaining nodes from head1 or head2     while (head1 != NULL) {                // Skip duplicates in the first list         while (head1->next != NULL                 && head1->data == head1->next->data) {             head1 = head1->next;         }         tail->next = createNode(head1->data);         tail = tail->next;         head1 = head1->next;     }      while (head2 != NULL) {                // Skip duplicates in the second list         while (head2->next != NULL                 && head2->data == head2->next->data) {             head2 = head2->next;         }         tail->next = createNode(head2->data);         tail = tail->next;         head2 = head2->next;     }      // Skip the dummy node     return head->next; }  // Function to get the intersection of two linked lists struct Node *getIntersection(struct Node *head1, struct Node *head2) {        // Initialize head to a dummy node with data -1     struct Node *head = createNode(-1);     struct Node *tail = head;      // Traverse both sorted lists to find common elements     while (head1 != NULL && head2 != NULL) {                // Skip duplicates in the first list         while (head1->next != NULL && head1->data == head1->next->data) {             head1 = head1->next;         }                // Skip duplicates in the second list         while (head2->next != NULL && head2->data == head2->next->data) {             head2 = head2->next;         }          if (head1->data < head2->data) {             head1 = head1->next;         }         else if (head1->data > head2->data) {             head2 = head2->next;         }         else {              // Common element found             tail->next = createNode(head1->data);             tail = tail->next;             head1 = head1->next;             head2 = head2->next;         }     }      // Skip the dummy node     return head->next; }  void printList(struct Node *head) {     struct Node *curr = head;     while (curr != NULL) {         printf("%d ", curr->data);         curr = curr->next;     }     printf("\n"); }  struct Node *createNode(int data) {     struct Node *newNode =        (struct Node *)malloc(sizeof(struct Node));     newNode->data = data;     newNode->next = NULL;     return newNode; }  int main() {        // Create two hard-coded singly linked lists:     // List 1: 10 -> 15 -> 4 -> 20     struct Node *head1 = createNode(10);     head1->next = createNode(15);     head1->next->next = createNode(4);     head1->next->next->next = createNode(20);      // List 2: 8 -> 4 -> 2 -> 10     struct Node *head2 = createNode(8);     head2->next = createNode(4);     head2->next->next = createNode(2);     head2->next->next->next = createNode(10);      // Sort the linked lists     head1 = mergeSort(head1);     head2 = mergeSort(head2);   	  	 //head1 and head2 List becomes sorted     struct Node *unionList = getUnion(head1, head2);     struct Node *intersectionList = getIntersection(head1, head2);      printf("Union: ");     printList(unionList);      printf("Intersection: ");     printList(intersectionList);      return 0; } 
Java
// Java program to find union and intersection of  // two unsored linked lists in O(nlogn) time.  class Node {     int data;     Node next;      Node(int data) {         this.data = data;         this.next = null;     } }  class GfG {      // Function to split the singly linked list   	// into two halves     static Node split(Node head) {         Node fast = head;         Node slow = head;          // Move fast pointer two steps and slow pointer         // one step until fast reaches the end         while (fast != null && fast.next != null) {             fast = fast.next.next;             if (fast != null) {                 slow = slow.next;             }         }          // Split the list into two halves         Node temp = slow.next;         slow.next = null;         return temp;     }      // Function to merge two sorted singly linked lists     static Node merge(Node head1, Node head2) {                // If either list is empty, return the other list         if (head1 == null) return head2;         if (head2 == null) return head1;          // Pick the smaller value between       	// head1 and head2 nodes         if (head1.data < head2.data) {                        // Recursively merge the rest of the lists and             // link the result to the current node             head1.next = merge(head1.next, head2);             return head1;         } else {                        // Recursively merge the rest of the lists             // and link the result to the current node             head2.next = merge(head1, head2.next);             return head2;         }     }      // Function to perform merge sort on    	// a singly linked list     static Node mergeSort(Node head) {                // Base case: if the list is empty or has only one node,          // it's already sorted         if (head == null || head.next == null) return head;          // Split the list into two halves         Node second = split(head);          // Recursively sort each half         head = mergeSort(head);         second = mergeSort(second);          // Merge the two sorted halves         return merge(head, second);     }      // Function to get the union of two linked lists     static Node getUnion(Node head1, Node head2) {                // Initialize head to a dummy node with data -1         Node head = new Node(-1);         Node tail = head;          // Merge both sorted lists to create the union list         while (head1 != null && head2 != null) {                        // Skip duplicates in the first list             while (head1.next != null && head1.data == head1.next.data) {                 head1 = head1.next;             }                        // Skip duplicates in the second list             while (head2.next != null && head2.data == head2.next.data) {                 head2 = head2.next;             }              if (head1.data < head2.data) {                                // Add head1 data to union list                 tail.next = new Node(head1.data);                 tail = tail.next;                 head1 = head1.next;             } else if (head1.data > head2.data) {                                // Add head2 data to union list                 tail.next = new Node(head2.data);                 tail = tail.next;                 head2 = head2.next;             } else {                                // Add common data to union list                 tail.next = new Node(head1.data);                 tail = tail.next;                 head1 = head1.next;                 head2 = head2.next;             }         }          // Add remaining nodes from head1 or head2         while (head1 != null) {                        // Skip duplicates in the first list             while (head1.next != null                     && head1.data == head1.next.data) {                 head1 = head1.next;             }             tail.next = new Node(head1.data);             tail = tail.next;             head1 = head1.next;         }          while (head2 != null) {                        // Skip duplicates in the second list             while (head2.next != null && head2.data == head2.next.data) {                 head2 = head2.next;             }             tail.next = new Node(head2.data);             tail = tail.next;             head2 = head2.next;         }          // Skip the dummy node         return head.next;     }      // Function to get the intersection of two linked lists     static Node getIntersection(Node head1, Node head2) {                // Initialize head to a dummy node with data -1         Node head = new Node(-1);         Node tail = head;          // Traverse both sorted lists to find common elements         while (head1 != null && head2 != null) {                        // Skip duplicates in the first list             while (head1.next != null && head1.data == head1.next.data) {                 head1 = head1.next;             }                        // Skip duplicates in the second list             while (head2.next != null && head2.data == head2.next.data) {                 head2 = head2.next;             }              if (head1.data < head2.data) {                 head1 = head1.next;             } else if (head1.data > head2.data) {                 head2 = head2.next;             } else {                                // Common element found                 tail.next = new Node(head1.data);                 tail = tail.next;                 head1 = head1.next;                 head2 = head2.next;             }         }          // Skip the dummy node         return head.next;     }      static void printList(Node head) {         Node curr = head;         while (curr != null) {             System.out.print(curr.data + " ");             curr = curr.next;         }         System.out.println();     }      public static void main(String[] args) {                // Create two hard-coded singly linked lists:         // List 1: 10 -> 15 -> 4 -> 20         Node head1 = new Node(10);         head1.next = new Node(15);         head1.next.next = new Node(4);         head1.next.next.next = new Node(20);          // List 2: 8 -> 4 -> 2 -> 10         Node head2 = new Node(8);         head2.next = new Node(4);         head2.next.next = new Node(2);         head2.next.next.next = new Node(10);          // Sort the linked lists using merSort         head1 = mergeSort(head1);         head2 = mergeSort(head2); 		       	//head1 and head2 List becomes sorted         Node unionList = getUnion(head1, head2);         Node intersectionList = getIntersection(head1, head2);          System.out.print("Union: ");         printList(unionList);          System.out.print("Intersection: ");         printList(intersectionList);     } } 
Python
# Python program to find union and intersection of  # two unsored linked lists in O(nlogn) time.  class Node:     def __init__(self, x):         self.data = x         self.next = None  # Function to split the singly linked  # list into two halves def split(head):     fast = head     slow = head      # Move fast pointer two steps and slow pointer     # one step until fast reaches the end     while fast and fast.next:         fast = fast.next.next         if fast:             slow = slow.next      # Split the list into two halves     temp = slow.next     slow.next = None     return temp  # Function to merge two sorted singly linked lists def merge(head1, head2):        # If either list is empty, return the other list     if head1 is None:         return head2     if head2 is None:         return head1      # Pick the smaller value between head1 and head2 nodes     if head1.data < head2.data:                # Recursively merge the rest of the lists and         # link the result to the current node         head1.next = merge(head1.next, head2)         return head1     else:                # Recursively merge the rest of the lists         # and link the result to the current node         head2.next = merge(head1, head2.next)         return head2  # Function to perform merge sort  # on a singly linked list def mergeSort(head):        # Base case: if the list is empty or has only one node,      # it's already sorted     if head is None or head.next is None:         return head      # Split the list into two halves     second = split(head)      # Recursively sort each half     head = mergeSort(head)     second = mergeSort(second)      # Merge the two sorted halves     return merge(head, second)  # Function to get the union of two linked lists def getUnion(head1, head2):        # Initialize head to a dummy node with data -1     head = Node(-1)     tail = head      # Merge both sorted lists to create the union list     while head1 and head2:                # Skip duplicates in the first list         while head1.next and head1.data == head1.next.data:             head1 = head1.next                      # Skip duplicates in the second list         while head2.next and head2.data == head2.next.data:             head2 = head2.next          if head1.data < head2.data:                        # Add head1 data to union list             tail.next = Node(head1.data)             tail = tail.next             head1 = head1.next         elif head1.data > head2.data:                        # Add head2 data to union list             tail.next = Node(head2.data)             tail = tail.next             head2 = head2.next         else:                        # Add common data to union list             tail.next = Node(head1.data)             tail = tail.next             head1 = head1.next             head2 = head2.next      # Add remaining nodes from head1 or head2     while head1:                # Skip duplicates in the first list         while head1.next and head1.data == head1.next.data:             head1 = head1.next         tail.next = Node(head1.data)         tail = tail.next         head1 = head1.next      while head2:                # Skip duplicates in the second list         while head2.next and head2.data == head2.next.data:             head2 = head2.next         tail.next = Node(head2.data)         tail = tail.next         head2 = head2.next          # Skip the dummy node     return head.next  # Function to get the intersection of two linked lists def getIntersection(head1, head2):        # Initialize head to a dummy node with data -1     head = Node(-1)     tail = head      # Traverse both sorted lists to find common elements     while head1 and head2:                # Skip duplicates in the first list         while head1.next and head1.data == head1.next.data:             head1 = head1.next                      # Skip duplicates in the second list         while head2.next and head2.data == head2.next.data:             head2 = head2.next          if head1.data < head2.data:             head1 = head1.next         elif head1.data > head2.data:             head2 = head2.next         else:                        # Common element found             tail.next = Node(head1.data)             tail = tail.next             head1 = head1.next             head2 = head2.next          # Skip the dummy node     return head.next  def printList(head):     curr = head     while curr:         print(curr.data, end=' ')         curr = curr.next     print()  if __name__ == "__main__":        # Create two hard-coded singly linked lists:     # List 1: 10 -> 15 -> 4 -> 20     head1 = Node(10)     head1.next = Node(15)     head1.next.next = Node(4)     head1.next.next.next = Node(20)      # List 2: 8 -> 4 -> 2 -> 10     head2 = Node(8)     head2.next = Node(4)     head2.next.next = Node(2)     head2.next.next.next = Node(10)          # Sort the linked lists     head1 = mergeSort(head1)     head2 = mergeSort(head2)      	#head1 and head2 List becomes sorted     unionList = getUnion(head1, head2)     intersectionList = getIntersection(head1, head2)      print("Union:", end=' ')     printList(unionList)      print("Intersection:", end=' ')     printList(intersectionList) 
C#
// C# program to find union and intersection of  // two unsored linked lists in O(nlogn) time.  using System;  class Node {     public int Data;     public Node Next;      public Node(int data) {         this.Data = data;         this.Next = null;     } }  class GfG {        // Function to split the singly linked list into two halves     static Node Split(Node head) {         Node fast = head;         Node slow = head;          // Move fast pointer two steps and slow pointer         // one step until fast reaches the end         while (fast != null && fast.Next != null) {             fast = fast.Next.Next;             if (fast != null) {                 slow = slow.Next;             }         }          // Split the list into two halves         Node temp = slow.Next;         slow.Next = null;         return temp;     }      // Function to merge two sorted singly linked lists     static Node Merge(Node head1, Node head2) {                // If either list is empty, return the other list         if (head1 == null) return head2;         if (head2 == null) return head1;          // Pick the smaller value between head1 and head2 nodes         if (head1.Data < head2.Data) {                        // Recursively merge the rest of the lists and             // link the result to the current node             head1.Next = Merge(head1.Next, head2);             return head1;         } else {                        // Recursively merge the rest of the lists             // and link the result to the current node             head2.Next = Merge(head1, head2.Next);             return head2;         }     }      // Function to perform merge sort on a singly linked list     static Node MergeSort(Node head) {                // Base case: if the list is empty or has only one node,          // it's already sorted         if (head == null || head.Next == null) return head;          // Split the list into two halves         Node second = Split(head);          // Recursively sort each half         head = MergeSort(head);         second = MergeSort(second);          // Merge the two sorted halves         return Merge(head, second);     }      // Function to get the union of two linked lists     static Node GetUnion(Node head1, Node head2) {                // Initialize head to a dummy node with data -1         Node head = new Node(-1);         Node tail = head;          // Merge both sorted lists to create the union list         while (head1 != null && head2 != null) {                        // Skip duplicates in the first list             while (head1.Next != null && head1.Data == head1.Next.Data) {                 head1 = head1.Next;             }                        // Skip duplicates in the second list             while (head2.Next != null && head2.Data == head2.Next.Data) {                 head2 = head2.Next;             }              if (head1.Data < head2.Data) {                                // Add head1 data to union list                 tail.Next = new Node(head1.Data);                 tail = tail.Next;                 head1 = head1.Next;             } else if (head1.Data > head2.Data) {                                // Add head2 data to union list                 tail.Next = new Node(head2.Data);                 tail = tail.Next;                 head2 = head2.Next;             } else {                                // Add common data to union list                 tail.Next = new Node(head1.Data);                 tail = tail.Next;                 head1 = head1.Next;                 head2 = head2.Next;             }         }          // Add remaining nodes from head1 or head2         while (head1 != null) {                        // Skip duplicates in the first list             while (head1.Next != null                     && head1.Data == head1.Next.Data) {                 head1 = head1.Next;             }             tail.Next = new Node(head1.Data);             tail = tail.Next;             head1 = head1.Next;         }          while (head2 != null) {                        // Skip duplicates in the second list             while (head2.Next != null                     && head2.Data == head2.Next.Data) {                 head2 = head2.Next;             }             tail.Next = new Node(head2.Data);             tail = tail.Next;             head2 = head2.Next;         }          // Skip the dummy node         return head.Next;     }      // Function to get the intersection of two linked lists     static Node GetIntersection(Node head1, Node head2) {                // Initialize head to a dummy node with data -1         Node head = new Node(-1);         Node tail = head;          // Traverse both sorted lists to find        	// common elements         while (head1 != null && head2 != null) {                        // Skip duplicates in the first list             while (head1.Next != null                     && head1.Data == head1.Next.Data) {                 head1 = head1.Next;             }                        // Skip duplicates in the second list             while (head2.Next != null                     && head2.Data == head2.Next.Data) {                 head2 = head2.Next;             }              if (head1.Data < head2.Data) {                 head1 = head1.Next;             } else if (head1.Data > head2.Data) {                 head2 = head2.Next;             } else {                                // Common element found                 tail.Next = new Node(head1.Data);                 tail = tail.Next;                 head1 = head1.Next;                 head2 = head2.Next;             }         }          // Skip the dummy node         return head.Next;     }      static void PrintList(Node head) {         Node curr = head;         while (curr != null) {             Console.Write(curr.Data + " ");             curr = curr.Next;         }         Console.WriteLine();     }      static void Main() {                // Create two hard-coded singly linked lists:         // List 1: 10 -> 15 -> 4 -> 20         Node head1 = new Node(10);         head1.Next = new Node(15);         head1.Next.Next = new Node(4);         head1.Next.Next.Next = new Node(20);          // List 2: 8 -> 4 -> 2 -> 10         Node head2 = new Node(8);         head2.Next = new Node(4);         head2.Next.Next = new Node(2);         head2.Next.Next.Next = new Node(10);          // Sort the linked lists         head1 = MergeSort(head1);         head2 = MergeSort(head2); 		      	 //head1 and head2 List becomes sorted         Node unionList = GetUnion(head1, head2);         Node intersectionList = GetIntersection(head1, head2);          Console.Write("Union: ");         PrintList(unionList);          Console.Write("Intersection: ");         PrintList(intersectionList);     } } 
JavaScript
// Javascript program to find union and intersection of  // two unsored linked lists in O(nlogn) time.  class Node {     constructor(x) {         this.data = x;         this.next = null;     } }  // Function to split the singly linked  // list into two halves function split(head) {     let fast = head;     let slow = head;      // Move fast pointer two steps and slow pointer     // one step until fast reaches the end     while (fast !== null && fast.next !== null) {         fast = fast.next.next;         if (fast !== null) {             slow = slow.next;         }     }      // Split the list into two halves     let temp = slow.next;     slow.next = null;     return temp; }  // Function to merge two sorted singly linked lists function merge(head1, head2) {      // If either list is empty, return the other list     if (head1 === null) return head2;     if (head2 === null) return head1;      // Pick the smaller value between head1 and head2 nodes     if (head1.data < head2.data) {              // Recursively merge the rest of the lists and         // link the result to the current node         head1.next = merge(head1.next, head2);         return head1;     } else {              // Recursively merge the rest of the lists         // and link the result to the current node         head2.next = merge(head1, head2.next);         return head2;     } }  // Function to perform merge sort on a singly linked list function mergeSort(head) {      // Base case: if the list is empty or has only one node,      // it's already sorted     if (head === null || head.next === null) return head;      // Split the list into two halves     let second = split(head);      // Recursively sort each half     head = mergeSort(head);     second = mergeSort(second);      // Merge the two sorted halves     return merge(head, second); }  // Function to get the union of two linked lists function getUnion(head1, head2) {      // Initialize head to a dummy node with data -1     let head = new Node(-1);     let tail = head;      // Merge both sorted lists to create the union list     while (head1 !== null && head2 !== null) {              // Skip duplicates in the first list         while (head1.next !== null          		&& head1.data === head1.next.data) {             head1 = head1.next;         }                  // Skip duplicates in the second list         while (head2.next !== null          		&& head2.data === head2.next.data) {             head2 = head2.next;         }          if (head1.data < head2.data) {                      // Add head1 data to union list             tail.next = new Node(head1.data);             tail = tail.next;             head1 = head1.next;         } else if (head1.data > head2.data) {                      // Add head2 data to union list             tail.next = new Node(head2.data);             tail = tail.next;             head2 = head2.next;         } else {                      // Add common data to union list             tail.next = new Node(head1.data);             tail = tail.next;             head1 = head1.next;             head2 = head2.next;         }     }      // Add remaining nodes from head1 or head2     while (head1 !== null) {              // Skip duplicates in the first list         while (head1.next !== null          		&& head1.data === head1.next.data) {             head1 = head1.next;         }         tail.next = new Node(head1.data);         tail = tail.next;         head1 = head1.next;     }      while (head2 !== null) {              // Skip duplicates in the second list         while (head2.next !== null          		&& head2.data === head2.next.data) {             head2 = head2.next;         }         tail.next = new Node(head2.data);         tail = tail.next;         head2 = head2.next;     }          // Skip the dummy node     return head.next; }  // Function to get the intersection of two linked lists function getIntersection(head1, head2) {      // Initialize head to a dummy node with data -1     let head = new Node(-1);     let tail = head;      // Traverse both sorted lists to find common elements     while (head1 !== null && head2 !== null) {              // Skip duplicates in the first list         while (head1.next !== null         		&& head1.data === head1.next.data) {             head1 = head1.next;         }                  // Skip duplicates in the second list         while (head2.next !== null          		&& head2.data === head2.next.data) {             head2 = head2.next;         }          if (head1.data < head2.data) {             head1 = head1.next;         } else if (head1.data > head2.data) {             head2 = head2.next;         } else {                      // Common element found             tail.next = new Node(head1.data);             tail = tail.next;             head1 = head1.next;             head2 = head2.next;         }     }          // Skip the dummy node     return head.next; }  function printList(head) {     let curr = head;     while (curr !== null) {         console.log(curr.data, end=' ');         curr = curr.next;     }     console.log(); }  // List 1: 10 -> 15 -> 4 -> 20 let head1 = new Node(10); head1.next = new Node(15); head1.next.next = new Node(4); head1.next.next.next = new Node(20);  // List 2: 8 -> 4 -> 2 -> 10 let head2 = new Node(8); head2.next = new Node(4); head2.next.next = new Node(2); head2.next.next.next = new Node(10);  head1 = mergeSort(head1); head2 = mergeSort(head2);  //head1 and head2 List becomes sorted let unionList = getUnion(head1, head2); let intersectionList = getIntersection(head1, head2);  console.log("Union:"); printList(unionList);  console.log("Intersection:"); printList(intersectionList); 

Output
Union: 2 4 8 10 15 20  Intersection: 4 10  

Time complexity: O(mLogm + nLogn). Time required to sort the lists are nlogn and mlogm and to find union and intersection linear time is required.
Auxiliary Space: O(m + n).

The above approach is not the most optimal solution for this problem. Plese refer to Union and Intersection using Hashing.



Next Article
Sorting by combining Insertion Sort and Merge Sort algorithms

S

Sahil Chhabra
Improve
Article Tags :
  • DSA
  • Hash
  • Linked List
  • Sorting
  • 24*7 Innovation Labs
  • Amazon
  • Flipkart
  • Komli Media
  • Merge Sort
  • Microsoft
  • Taxi4Sure
  • VMWare
  • Walmart
Practice Tags :
  • 24*7 Innovation Labs
  • Amazon
  • Flipkart
  • Komli Media
  • Microsoft
  • Taxi4Sure
  • VMWare
  • Walmart
  • Hash
  • Linked List
  • Merge Sort
  • Sorting

Similar Reads

  • Merge Sort - Data Structure and Algorithms Tutorials
    Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. How do
    14 min read
  • Merge sort in different languages

    • C Program for Merge Sort
      Merge Sort is a comparison-based sorting algorithm that works by dividing the input array into two halves, then calling itself for these two halves, and finally it merges the two sorted halves. In this article, we will learn how to implement merge sort in C language. What is Merge Sort Algorithm?Mer
      3 min read

    • C++ Program For Merge Sort
      Merge Sort is a comparison-based sorting algorithm that uses divide and conquer paradigm to sort the given dataset. It divides the dataset into two halves, calls itself for these two halves, and then it merges the two sorted halves. In this article, we will learn how to implement merge sort in a C++
      4 min read

    • Java Program for Merge Sort
      Merge Sort is a divide-and-conquer algorithm. It divides the input array into two halves, calls itself the two halves, and then merges the two sorted halves. The merge() function is used for merging two halves. The merge(arr, l, m, r) is a key process that assumes that arr[l..m] and arr[m+1..r] are
      3 min read

    • Merge Sort in Python
      Merge Sort is a Divide and Conquer algorithm. It divides input array in two halves, calls itself for the two halves and then merges the two sorted halves. The merge() function is used for merging two halves. The merge(arr, l, m, r) is key process that assumes that arr[l..m] and arr[m+1..r] are sorte
      4 min read

    • Merge Sort using Multi-threading
      Merge Sort is a popular sorting technique which divides an array or list into two halves and then start merging them when sufficient depth is reached. Time complexity of merge sort is O(nlogn).Threads are lightweight processes and threads shares with other threads their code section, data section an
      14 min read

    Variations of Merge Sort

    • 3-way Merge Sort
      Merge Sort is a divide-and-conquer algorithm that recursively splits an array into two halves, sorts each half, and then merges them. A variation of this is 3-way Merge Sort, where instead of splitting the array into two parts, we divide it into three equal parts. In traditional Merge Sort, the arra
      14 min read

    • Iterative Merge Sort
      Given an array of size n, the task is to sort the given array using iterative merge sort. Examples: Input: arr[] = [4, 1, 3, 9, 7]Output: [1, 3, 4, 7, 9]Explanation: The output array is sorted. Input: arr[] = [1, 3 , 2]Output: [1, 2, 3]Explanation: The output array is sorted. You can refer to Merge
      9 min read

    • In-Place Merge Sort
      Implement Merge Sort i.e. standard implementation keeping the sorting algorithm as in-place. In-place means it does not occupy extra memory for merge operation as in the standard case. Examples: Input: arr[] = {2, 3, 4, 1} Output: 1 2 3 4 Input: arr[] = {56, 2, 45} Output: 2 45 56 Approach 1: Mainta
      15+ min read

    • In-Place Merge Sort | Set 2
      Given an array A[] of size N, the task is to sort the array in increasing order using In-Place Merge Sort. Examples: Input: A = {5, 6, 3, 2, 1, 6, 7}Output: {1, 2, 3, 5, 6, 6, 7} Input: A = {2, 3, 4, 1}Output: {1, 2, 3, 4} Approach: The idea is to use the inplace_merge() function to merge the sorted
      7 min read

    • Merge Sort with O(1) extra space merge and O(n log n) time [Unsigned Integers Only]
      We have discussed Merge sort. How to modify the algorithm so that merge works in O(1) extra space and algorithm still works in O(n Log n) time. We may assume that the input values are integers only. Examples: Input : 5 4 3 2 1 Output : 1 2 3 4 5 Input : 999 612 589 856 56 945 243 Output : 56 243 589
      10 min read

    Merge Sort in Linked List

    • Merge Sort for Linked Lists
      Given a singly linked list, The task is to sort the linked list in non-decreasing order using merge sort. Examples: Input: 40 -> 20 -> 60 -> 10 -> 50 -> 30 -> NULLOutput: 10 -> 20 -> 30 -> 40 -> 50 -> 60 -> NULL Input: 9 -> 5 -> 2 -> 8 -> NULLOutput: 2
      12 min read

    • Merge Sort for Doubly Linked List
      Given a doubly linked list, The task is to sort the doubly linked list in non-decreasing order using merge sort.Examples: Input: 10 <-> 8 <-> 4 <-> 2Output: 2 <-> 4 <-> 8 <-> 10Input: 5 <-> 3 <-> 2Output: 2 <-> 3 <-> 5 Note: Merge sort for
      13 min read

    • Iterative Merge Sort for Linked List
      Given a singly linked list of integers, the task is to sort it using iterative merge sort. Examples: Input: 40 -> 20 -> 60 -> 10 -> 50 -> 30 -> NULLOutput: 10 -> 20 -> 30 -> 40 -> 50 -> 60 -> NULL Input: 9 -> 5 -> 2 -> 8 -> NULLOutput: 2 -> 5 ->
      14 min read

    • Merge two sorted lists (in-place)
      Given two sorted linked lists consisting of n and m nodes respectively. The task is to merge both of the lists and return the head of the merged list. Example: Input: Output: Input: Output: Approach: The idea is to iteratively merge two sorted linked lists using a dummy node to simplify the process.
      9 min read

    • Merge K sorted Doubly Linked List in Sorted Order
      Given K sorted doubly linked list. The task is to merge all sorted doubly linked list in single sorted doubly linked list means final list must be sorted.Examples: Input: List 1 : 2 <-> 7 <-> 8 <-> 12 <-> 15 <-> NULL List 2 : 4 <-> 9 <-> 10 <-> NULL Li
      15+ min read

    • Merge a linked list into another linked list at alternate positions
      Given two singly linked lists, The task is to insert nodes of the second list into the first list at alternate positions of the first list and leave the remaining nodes of the second list if it is longer. Example: Input: head1: 1->2->3 , head2: 4->5->6->7->8Output: head1: 1->4-
      8 min read

  • Find a permutation that causes worst case of Merge Sort
    Given a set of elements, find which permutation of these elements would result in worst case of Merge Sort.Asymptotically, merge sort always takes O(n Log n) time, but the cases that require more comparisons generally take more time in practice. We basically need to find a permutation of input eleme
    12 min read
  • How to make Mergesort to perform O(n) comparisons in best case?
    As we know, Mergesort is a divide and conquer algorithm that splits the array to halves recursively until it reaches an array of the size of 1, and after that it merges sorted subarrays until the original array is fully sorted. Typical implementation of merge sort works in O(n Log n) time in all thr
    3 min read
  • Concurrent Merge Sort in Shared Memory
    Given a number 'n' and a n numbers, sort the numbers using Concurrent Merge Sort. (Hint: Try to use shmget, shmat system calls).Part1: The algorithm (HOW?) Recursively make two child processes, one for the left half, one of the right half. If the number of elements in the array for a process is less
    10 min read
  • Visualization of Merge Sort

    • Sorting Algorithm Visualization : Merge Sort
      The human brain can easily process visuals instead of long codes to understand the algorithms. In this article, a program that program visualizes the Merge sort Algorithm has been implemented. The GUI(Graphical User Interface) is implemented using pygame package in python. Approach: An array of rand
      3 min read

    • Merge Sort Visualization in JavaScript
      GUI(Graphical User Interface) helps users with better understanding programs. In this article, we will visualize Merge Sort using JavaScript. We will see how the arrays are divided and merged after sorting to get the final sorted array.  Refer: Merge SortCanvas in HTMLAsynchronous Function in JavaSc
      4 min read

    • Visualize Merge sort Using Tkinter in Python
      Prerequisites: Python GUI – tkinter In this article, we will create a GUI application that will help us to visualize the algorithm of merge sort using Tkinter in Python. Merge Sort is a popular sorting algorithm. It has a time complexity of N(logN) which is faster than other sorting algorithms like
      5 min read

    • Visualization of Merge sort using Matplotlib
      Prerequisites: Introduction to Matplotlib, Merge Sort Visualizing algorithms makes it easier to understand them by analyzing and comparing the number of operations that took place to compare and swap the elements. For this we will use matplotlib, to plot bar graphs to represent the elements of the a
      3 min read

    • 3D Visualisation of Merge Sort using Matplotlib
      Visualizing algorithms makes it easier to understand them by analyzing and comparing the number of operations that took place to compare and swap the elements. 3D visualization of algorithms is less common, for this we will use matplotlib to plot bar graphs and animate them to represent the elements
      3 min read

    Some problems on Merge Sort

    • Count Inversions of an Array
      Given an integer array arr[] of size n, find the inversion count in the array. Two array elements arr[i] and arr[j] form an inversion if arr[i] > arr[j] and i < j. Note: Inversion Count for an array indicates that how far (or close) the array is from being sorted. If the array is already sorte
      15+ min read

    • Count of smaller elements on right side of each element in an Array using Merge sort
      Given an array arr[] of N integers, the task is to count the number of smaller elements on the right side for each of the element in the array Examples: Input: arr[] = {6, 3, 7, 2} Output: 2, 1, 1, 0 Explanation: Smaller elements after 6 = 2 [3, 2] Smaller elements after 3 = 1 [2] Smaller elements a
      12 min read

    • Sort a nearly sorted (or K sorted) array
      Given an array arr[] and a number k . The array is sorted in a way that every element is at max k distance away from it sorted position. It means if we completely sort the array, then the index of the element can go from i - k to i + k where i is index in the given array. Our task is to completely s
      6 min read

    • Median of two Sorted Arrays of Different Sizes
      Given two sorted arrays, a[] and b[], the task is to find the median of these sorted arrays. Assume that the two sorted arrays are merged and then median is selected from the combined array. This is an extension of Median of two sorted arrays of equal size problem. Here we handle arrays of unequal s
      15+ min read

    • Merge k Sorted Arrays
      Given K sorted arrays, merge them and print the sorted output. Examples: Input: K = 3, arr = { {1, 3, 5, 7}, {2, 4, 6, 8}, {0, 9, 10, 11}}Output: 0 1 2 3 4 5 6 7 8 9 10 11 Input: k = 4, arr = { {1}, {2, 4}, {3, 7, 9, 11}, {13} }Output: 1 2 3 4 7 9 11 13 Table of Content Naive - Concatenate all and S
      15+ min read

    • Merge K sorted arrays of different sizes | ( Divide and Conquer Approach )
      Given k sorted arrays of different length, merge them into a single array such that the merged array is also sorted.Examples: Input : {{3, 13}, {8, 10, 11} {9, 15}} Output : {3, 8, 9, 10, 11, 13, 15} Input : {{1, 5}, {2, 3, 4}} Output : {1, 2, 3, 4, 5} Let S be the total number of elements in all th
      8 min read

    • Merge K sorted linked lists
      Given k sorted linked lists of different sizes, the task is to merge them all maintaining their sorted order. Examples: Input: Output: Merged lists in a sorted order where every element is greater than the previous element. Input: Output: Merged lists in a sorted order where every element is greater
      15+ min read

    • Union and Intersection of two Linked List using Merge Sort
      Given two singly Linked Lists, create union and intersection lists that contain the union and intersection of the elements present in the given lists. Each of the two lists contains distinct node values. Note: The order of elements in output lists doesn't matter. Examples: Input: head1: 10 -> 15
      15+ min read

    • Sorting by combining Insertion Sort and Merge Sort algorithms
      Insertion sort: The array is virtually split into a sorted and an unsorted part. Values from the unsorted part are picked and placed at the correct position in the sorted part.Advantages: Following are the advantages of insertion sort: If the size of the list to be sorted is small, insertion sort ru
      2 min read

    • Find array with k number of merge sort calls
      Given two numbers n and k, find an array containing values in [1, n] and requires exactly k calls of recursive merge sort function. Examples: Input : n = 3 k = 3 Output : a[] = {2, 1, 3} Explanation: Here, a[] = {2, 1, 3} First of all, mergesort(0, 3) will be called, which then sets mid = 1 and call
      6 min read

    • Difference of two Linked Lists using Merge sort
      Given two Linked List, the task is to create a Linked List to store the difference of Linked List 1 with Linked List 2, i.e. the elements present in List 1 but not in List 2.Examples: Input: List1: 10 -> 15 -> 4 ->20, List2: 8 -> 4 -> 2 -> 10 Output: 15 -> 20 Explanation: In the
      14 min read

geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences