Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
    • Practice Coding Problems
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Data Science
  • Data Science Projects
  • Data Analysis
  • Data Visualization
  • Machine Learning
  • ML Projects
  • Deep Learning
  • NLP
  • Computer Vision
  • Artificial Intelligence
Open In App
Next Article:
Image Recognition with Mobilenet
Next article icon

Understanding GoogLeNet Model - CNN Architecture

Last Updated : 18 Nov, 2021
Comments
Improve
Suggest changes
Like Article
Like
Report
Google Net (or Inception V1) was proposed by research at Google (with the collaboration of various universities) in 2014 in the research paper titled "Going Deeper with Convolutions". This architecture was the winner at the ILSVRC 2014 image classification challenge. It has provided a significant decrease in error rate as compared to previous winners AlexNet (Winner of ILSVRC 2012) and ZF-Net (Winner of ILSVRC 2013) and significantly less error rate than VGG (2014 runner up). This architecture uses techniques such as 1x1 convolutions in the middle of the architecture and global average pooling. Features of GoogleNet: The GoogLeNet architecture is very different from previous state-of-the-art architectures such as AlexNet and ZF-Net. It uses many different kinds of methods such as 1x1 convolution and global average pooling that enables it to create deeper architecture. In the architecture, we will discuss some of these methods:
  • 1x1 convolution : The inception architecture uses 1x1 convolution in its architecture. These convolutions used to decrease the number of parameters (weights and biases) of the architecture. By reducing the parameters we also increase the depth of the architecture. Let's look at an example of a 1x1 convolution below:
    • For Example, If we want to perform 5x5 convolution having 48 filters without using 1x1 convolution as intermediate:
  • Total Number of operations : (14 x 14 x 48) x (5 x 5 x 480) = 112.9 M
    • With 1x1 convolution :
  • (14 x 14 x 16) x (1 x 1 x 480) + (14 x 14 x 48) x (5 x 5 x 16) = 1.5M + 3.8M = 5.3M which is much smaller than 112.9M.
  • Global Average Pooling :
    In the previous architecture such as AlexNet, the fully connected layers are used at the end of the network. These fully connected layers contain the majority of parameters of many architectures that causes an increase in computation cost.
    In GoogLeNet architecture, there is a method called global average pooling is used at the end of the network. This layer takes a feature map of 7x7 and averages it to 1x1. This also decreases the number of trainable parameters to 0 and improves the top-1 accuracy by 0.6%
  • Inception Module:
    The inception module is different from previous architectures such as AlexNet, ZF-Net. In this architecture, there is a fixed convolution size for each layer.
    In the Inception module 1x1, 3x3, 5x5 convolution and 3x3 max pooling performed in a parallel way at the input and the output of these are stacked together to generated final output. The idea behind that convolution filters of different sizes will handle objects at multiple scale better.
  • Auxiliary Classifier for Training:
    Inception architecture used some intermediate classifier branches in the middle of the architecture, these branches are used during training only. These branches consist of a 5x5 average pooling layer with a stride of 3, a 1x1 convolutions with 128 filters, two fully connected layers of 1024 outputs and 1000 outputs and a softmax classification layer. The generated loss of these layers added to total loss with a weight of 0.3. These layers help in combating gradient vanishing problem and also provide regularization.
Model Architecture: Below is Layer by Layer architectural details of GoogLeNet. The overall architecture is 22 layers deep. The architecture was designed to keep computational efficiency in mind. The idea behind that the architecture can be run on individual devices even with low computational resources. The architecture also contains two auxiliary classifier layer connected to the output of Inception (4a) and Inception (4d) layers. The architectural details of auxiliary classifiers as follows:
  • An average pooling layer of filter size 5x5 and stride 3.
  • A 1x1 convolution with 128 filters for dimension reduction and ReLU activation.
  • A fully connected layer with 1025 outputs and ReLU activation
  • Dropout Regularization with dropout ratio = 0.7
  • A softmax classifier with 1000 classes output similar to the main softmax classifier.
This architecture takes image of size 224 x 224 with RGB color channels. All the convolutions inside this architecture uses Rectified Linear Units (ReLU) as their activation functions. Results: GoogLeNet was the winner at ILSRVRC 2014 taking 1st place in both classification an detection task. It has top-5 error rate of 6.67% in classification task. An ensemble of 6 GoogLeNets gives 43.9 % mAP on ImageNet test set.
GoogLeNet Classification top-5 Error
GoogLeNet Detection Performance
References:
  • GoogLeNet Paper

Next Article
Image Recognition with Mobilenet

P

pawangfg
Improve
Article Tags :
  • Machine Learning
  • Image-Processing
Practice Tags :
  • Machine Learning

Similar Reads

    Computer Vision Tutorial
    Computer Vision is a branch of Artificial Intelligence (AI) that enables computers to interpret and extract information from images and videos, similar to human perception. It involves developing algorithms to process visual data and derive meaningful insights.Why Learn Computer Vision?High Demand i
    8 min read

    Introduction to Computer Vision

    Computer Vision - Introduction
    Ever wondered how are we able to understand the things we see? Like we see someone walking, whether we realize it or not, using the prerequisite knowledge, our brain understands what is happening and stores it as information. Imagine we look at something and go completely blank. Into oblivion. Scary
    3 min read
    A Quick Overview to Computer Vision
    Computer vision means the extraction of information from images, text, videos, etc. Sometimes computer vision tries to mimic human vision. It’s a subset of computer-based intelligence or Artificial intelligence which collects information from digital images or videos and analyze them to define the a
    3 min read
    Applications of Computer Vision
    Have you ever wondered how machines can "see" and understand the world around them, much like humans do? This is the magic of computer vision—a branch of artificial intelligence that enables computers to interpret and analyze digital images, videos, and other visual inputs. From self-driving cars to
    6 min read
    Fundamentals of Image Formation
    Image formation is an analog to digital conversion of an image with the help of 2D Sampling and Quantization techniques that is done by the capturing devices like cameras. In general, we see a 2D view of the 3D world.In the same way, the formation of the analog image took place. It is basically a co
    7 min read
    Satellite Image Processing
    Satellite Image Processing is an important field in research and development and consists of the images of earth and satellites taken by the means of artificial satellites. Firstly, the photographs are taken in digital form and later are processed by the computers to extract the information. Statist
    2 min read
    Image Formats
    Image formats are different types of file types used for saving pictures, graphics, and photos. Choosing the right image format is important because it affects how your images look, load, and perform on websites, social media, or in print. Common formats include JPEG, PNG, GIF, and SVG, each with it
    5 min read

    Image Processing & Transformation

    Digital Image Processing Basics
    Digital Image Processing means processing digital image by means of a digital computer. We can also say that it is a use of computer algorithms, in order to get enhanced image either to extract some useful information. Digital image processing is the use of algorithms and mathematical models to proc
    7 min read
    Difference Between RGB, CMYK, HSV, and YIQ Color Models
    The colour spaces in image processing aim to facilitate the specifications of colours in some standard way. Different types of colour models are used in multiple fields like in hardware, in multiple applications of creating animation, etc. Let’s see each colour model and its application. RGBCMYKHSV
    3 min read
    Image Enhancement Techniques using OpenCV - Python
    Image enhancement is the process of improving the quality and appearance of an image. It can be used to correct flaws or defects in an image, or to simply make an image more visually appealing. Image enhancement techniques can be applied to a wide range of images, including photographs, scans, and d
    15+ min read
    Image Transformations using OpenCV in Python
    In this tutorial, we are going to learn Image Transformation using the OpenCV module in Python. What is Image Transformation? Image Transformation involves the transformation of image data in order to retrieve information from the image or preprocess the image for further usage. In this tutorial we
    5 min read
    How to find the Fourier Transform of an image using OpenCV Python?
    The Fourier Transform is a mathematical tool used to decompose a signal into its frequency components. In the case of image processing, the Fourier Transform can be used to analyze the frequency content of an image, which can be useful for tasks such as image filtering and feature extraction. In thi
    5 min read
    Python | Intensity Transformation Operations on Images
    Intensity transformations are applied on images for contrast manipulation or image thresholding. These are in the spatial domain, i.e. they are performed directly on the pixels of the image at hand, as opposed to being performed on the Fourier transform of the image. The following are commonly used
    5 min read
    Histogram Equalization in Digital Image Processing
    A digital image is a two-dimensional matrix of two spatial coordinates, with each cell specifying the intensity level of the image at that point. So, we have an N x N matrix with integer values ranging from a minimum intensity level of 0 to a maximum level of L-1, where L denotes the number of inten
    5 min read
    Python - Color Inversion using Pillow
    Color Inversion (Image Negative) is the method of inverting pixel values of an image. Image inversion does not depend on the color mode of the image, i.e. inversion works on channel level. When inversion is used on a multi color image (RGB, CMYK etc) then each channel is treated separately, and the
    4 min read
    Image Sharpening Using Laplacian Filter and High Boost Filtering in MATLAB
    Image sharpening is an effect applied to digital images to give them a sharper appearance. Sharpening enhances the definition of edges in an image. The dull images are those which are poor at the edges. There is not much difference in background and edges. On the contrary, the sharpened image is tha
    4 min read
    Wand sharpen() function - Python
    The sharpen() function is an inbuilt function in the Python Wand ImageMagick library which is used to sharpen the image. Syntax: sharpen(radius, sigma) Parameters: This function accepts four parameters as mentioned above and defined below: radius: This parameter stores the radius value of the sharpn
    2 min read
    Python OpenCV - Smoothing and Blurring
    In this article, we are going to learn about smoothing and blurring with python-OpenCV. When we are dealing with images at some points the images will be crisper and sharper which we need to smoothen or blur to get a clean image, or sometimes the image will be with a really bad edge which also we ne
    7 min read
    Python PIL | GaussianBlur() method
    PIL is the Python Imaging Library which provides the python interpreter with image editing capabilities. The ImageFilter module contains definitions for a pre-defined set of filters, which can be used with the Image.filter() method. PIL.ImageFilter.GaussianBlur() method create Gaussian blur filter.
    1 min read
    Apply a Gauss filter to an image with Python
    A Gaussian Filter is a low-pass filter used for reducing noise (high-frequency components) and for blurring regions of an image. This filter uses an odd-sized, symmetric kernel that is convolved with the image. The kernel weights are highest at the center and decrease as you move towards the periphe
    2 min read
    Spatial Filtering and its Types
    Spatial Filtering technique is used directly on pixels of an image. Mask is usually considered to be added in size so that it has specific center pixel. This mask is moved on the image such that the center of the mask traverses all image pixels. Classification on the basis of Linearity There are two
    3 min read
    Python PIL | MedianFilter() and ModeFilter() method
    PIL is the Python Imaging Library which provides the python interpreter with image editing capabilities. The ImageFilter module contains definitions for a pre-defined set of filters, which can be used with the Image.filter() method. PIL.ImageFilter.MedianFilter() method creates a median filter. Pick
    1 min read
    Python | Bilateral Filtering
    A bilateral filter is used for smoothening images and reducing noise, while preserving edges. This article explains an approach using the averaging filter, while this article provides one using a median filter. However, these convolutions often result in a loss of important edge information, since t
    2 min read
    Python OpenCV - Morphological Operations
    Python OpenCV Morphological operations are one of the Image processing techniques that processes image based on shape. This processing strategy is usually performed on binary images.  Morphological operations based on OpenCV are as follows:ErosionDilationOpeningClosingMorphological GradientTop hatBl
    5 min read
    Erosion and Dilation of images using OpenCV in python
    Morphological operations are a set of operations that process images based on shapes. They apply a structuring element to an input image and generate an output image. The most basic morphological operations are two: Erosion and Dilation Basics of Erosion: Erodes away the boundaries of the foreground
    2 min read
    Introduction to Resampling methods
    While reading about Machine Learning and Data Science we often come across a term called Imbalanced Class Distribution, which generally happens when observations in one of the classes are much higher or lower than in other classes. As Machine Learning algorithms tend to increase accuracy by reducing
    8 min read
    Python | Image Registration using OpenCV
    Image registration is a digital image processing technique that helps us align different images of the same scene. For instance, one may click the picture of a book from various angles. Below are a few instances that show the diversity of camera angles.Now, we may want to "align" a particular image
    3 min read

    Feature Extraction and Description

    Feature Extraction Techniques - NLP
    Introduction : This article focuses on basic feature extraction techniques in NLP to analyse the similarities between pieces of text. Natural Language Processing (NLP) is a branch of computer science and machine learning that deals with training computers to process a large amount of human (natural)
    10 min read
    SIFT Interest Point Detector Using Python - OpenCV
    SIFT (Scale Invariant Feature Transform) Detector is used in the detection of interest points on an input image. It allows the identification of localized features in images which is essential in applications such as:   Object Recognition in ImagesPath detection and obstacle avoidance algorithmsGest
    4 min read
    Feature Matching using Brute Force in OpenCV
    In this article, we will do feature matching using Brute Force in Python by using OpenCV library. Prerequisites: OpenCV OpenCV is a python library which is used to solve the computer vision problems. OpenCV is an open source Computer Vision library. So computer vision is a way of teaching intelligen
    13 min read
    Feature detection and matching with OpenCV-Python
    In this article, we are going to see about feature detection in computer vision with OpenCV in Python. Feature detection is the process of checking the important features of the image in this case features of the image can be edges, corners, ridges, and blobs in the images. In OpenCV, there are a nu
    5 min read
    Feature matching using ORB algorithm in Python-OpenCV
    ORB is a fusion of FAST keypoint detector and BRIEF descriptor with some added features to improve the performance. FAST is Features from Accelerated Segment Test used to detect features from the provided image. It also uses a pyramid to produce multiscale-features. Now it doesn’t compute the orient
    2 min read
    Mahotas - Speeded-Up Robust Features
    In this article we will see how we can get the speeded up robust features of image in mahotas. In computer vision, speeded up robust features (SURF) is a patented local feature detector and descriptor. It can be used for tasks such as object recognition, image registration, classification, or 3D rec
    2 min read
    Create Local Binary Pattern of an image using OpenCV-Python
    In this article, we will discuss the image and how to find a binary pattern using the pixel value of the image. As we all know, image is also known as a set of pixels. When we store an image in computers or digitally, it’s corresponding pixel values are stored. So, when we read an image to a variabl
    5 min read

    Deep Learning for Computer Vision

    Image Classification using CNN
    The article is about creating an Image classifier for identifying cat-vs-dogs using TFLearn in Python. Machine Learning is now one of the hottest topics around the world. Well, it can even be said of the new electricity in today's world. But to be precise what is Machine Learning, well it's just one
    7 min read
    What is Transfer Learning?
    Transfer learning is a machine learning technique where a model trained on one task is repurposed as the foundation for a second task. This approach is beneficial when the second task is related to the first or when data for the second task is limited. Using learned features from the initial task, t
    8 min read
    Top 5 PreTrained Models in Natural Language Processing (NLP)
    Pretrained models are deep learning models that have been trained on huge amounts of data before fine-tuning for a specific task. The pre-trained models have revolutionized the landscape of natural language processing as they allow the developer to transfer the learned knowledge to specific tasks, e
    7 min read
    ML | Introduction to Strided Convolutions
    Let us begin this article with a basic question - "Why padding and strided convolutions are required?" Assume we have an image with dimensions of n x n. If it is convoluted with an f x f filter, then the dimensions of the image obtained are (n-f+1) x (n-f+1). Example: Consider a 6 x 6 image as shown
    2 min read
    Dilated Convolution
    Prerequisite: Convolutional Neural Networks Dilated Convolution: It is a technique that expands the kernel (input) by inserting holes between its consecutive elements. In simpler terms, it is the same as convolution but it involves pixel skipping, so as to cover a larger area of the input.  Dilated
    5 min read
    Continuous Kernel Convolution
    Continuous Kernel convolution was proposed by the researcher of Verije University Amsterdam in collaboration with the University of Amsterdam in a paper titled 'CKConv: Continuous Kernel Convolution For Sequential Data'. The motivation behind that is to propose a model that uses the properties of co
    6 min read
    CNN | Introduction to Pooling Layer
    Pooling layer is used in CNNs to reduce the spatial dimensions (width and height) of the input feature maps while retaining the most important information. It involves sliding a two-dimensional filter over each channel of a feature map and summarizing the features within the region covered by the fi
    5 min read
    CNN | Introduction to Padding
    During convolution, the size of the output feature map is determined by the size of the input feature map, the size of the kernel, and the stride. if we simply apply the kernel on the input feature map, then the output feature map will be smaller than the input. This can result in the loss of inform
    5 min read
    What is the difference between 'SAME' and 'VALID' padding in tf.nn.max_pool of tensorflow?
    Padding is a technique used in convolutional neural networks (CNNs) to preserve the spatial dimensions of the input data and prevent the loss of information at the edges of the image. It involves adding additional rows and columns of pixels around the edges of the input data. There are several diffe
    14 min read
    Convolutional Neural Network (CNN) Architectures
    Convolutional Neural Network(CNN) is a neural network architecture in Deep Learning, used to recognize the pattern from structured arrays. However, over many years, CNN architectures have evolved. Many variants of the fundamental CNN Architecture This been developed, leading to amazing advances in t
    11 min read
    Deep Transfer Learning - Introduction
    Deep transfer learning is a machine learning technique that utilizes the knowledge learned from one task to improve the performance of another related task. This technique is particularly useful when there is a shortage of labeled data for the target task, as it allows the model to leverage the know
    8 min read
    Introduction to Residual Networks
    Recent years have seen tremendous progress in the field of Image Processing and Recognition. Deep Neural Networks are becoming deeper and more complex. It has been proved that adding more layers to a Neural Network can make it more robust for image-related tasks. But it can also cause them to lose a
    4 min read
    Residual Networks (ResNet) - Deep Learning
    After the first CNN-based architecture (AlexNet) that win the ImageNet 2012 competition, Every subsequent winning architecture uses more layers in a deep neural network to reduce the error rate. This works for less number of layers, but when we increase the number of layers, there is a common proble
    9 min read
    ML | Inception Network V1
    Inception net achieved a milestone in CNN classifiers when previous models were just going deeper to improve the performance and accuracy but compromising the computational cost. The Inception network, on the other hand, is heavily engineered. It uses a lot of tricks to push performance, both in ter
    4 min read
    Understanding GoogLeNet Model - CNN Architecture
    Google Net (or Inception V1) was proposed by research at Google (with the collaboration of various universities) in 2014 in the research paper titled "Going Deeper with Convolutions". This architecture was the winner at the ILSVRC 2014 image classification challenge. It has provided a significant de
    4 min read
    Image Recognition with Mobilenet
    Introduction: Image Recognition plays an important role in many fields like medical disease analysis, and many more. In this article, we will mainly focus on how to Recognize the given image, what is being displayed. We are assuming to have a pre-knowledge of Tensorflow, Keras, Python, MachineLearni
    5 min read
    VGG-16 | CNN model
    A Convolutional Neural Network (CNN) architecture is a deep learning model designed for processing structured grid-like data, such as images. It consists of multiple layers, including convolutional, pooling, and fully connected layers. CNNs are highly effective for tasks like image classification, o
    7 min read
    Autoencoders in Machine Learning
    Autoencoders are a special type of neural networks that learn to compress data into a compact form and then reconstruct it to closely match the original input. They consist of an:Encoder that captures important features by reducing dimensionality.Decoder that rebuilds the data from this compressed r
    8 min read
    How Autoencoders works ?
    Autoencoders is used for tasks like dimensionality reduction, anomaly detection and feature extraction. The goal of an autoencoder is to to compress data into a compact form and then reconstruct it to closely match the original input. The model trains by minimizing reconstruction error using loss fu
    6 min read
    Difference Between Encoder and Decoder
    Combinational Logic is the concept in which two or more input states define one or more output states. The Encoder and Decoder are combinational logic circuits. In which we implement combinational logic with the help of boolean algebra. To encode something is to convert in piece of information into
    9 min read
    Implementing an Autoencoder in PyTorch
    Autoencoders are neural networks designed for unsupervised tasks like dimensionality reduction, anomaly detection and feature extraction. They work by compressing data into a smaller form through an encoder and then reconstructing it back using a decoder. The goal is to minimize the difference betwe
    4 min read
    Generative Adversarial Network (GAN)
    Generative Adversarial Networks (GANs) help machines to create new, realistic data by learning from existing examples. It is introduced by Ian Goodfellow and his team in 2014 and they have transformed how computers generate images, videos, music and more. Unlike traditional models that only recogniz
    12 min read
    Deep Convolutional GAN with Keras
    Deep Convolutional GAN (DCGAN) was proposed by a researcher from MIT and Facebook AI research. It is widely used in many convolution-based generation-based techniques. The focus of this paper was to make training GANs stable. Hence, they proposed some architectural changes in the computer vision pro
    9 min read
    StyleGAN - Style Generative Adversarial Networks
    StyleGAN is a generative model that produces highly realistic images by controlling image features at multiple levels from overall structure to fine details like texture and lighting. It is developed by NVIDIA and builds on traditional GANs with a unique architecture that separates style from conten
    5 min read

    Object Detection and Recognition

    Detect an object with OpenCV-Python
    Object detection refers to identifying and locating objects within images or videos. OpenCV provides a simple way to implement object detection using Haar Cascades a classifier trained to detect objects based on positive and negative images. In this article we will focus on detecting objects using i
    4 min read
    Haar Cascades for Object Detection - Python
    Haar Cascade classifiers are a machine learning-based method for object detection. They use a set of positive and negative images to train a classifier, which is then used to detect objects in new images. Positive Images: These images contain the objects that the classifier is trained to detect.Nega
    3 min read
    R-CNN - Region-Based Convolutional Neural Networks
    R-CNN (Region-based Convolutional Neural Network) was introduced by Ross Girshick et al. in 2014. R-CNN revolutionized object detection by combining the strengths of region proposal algorithms and deep learning, leading to remarkable improvements in detection accuracy and efficiency. This article de
    9 min read
    YOLO v2 - Object Detection
    In terms of speed, YOLO is one of the best models in object recognition, able to recognize objects and process frames at the rate up to 150 FPS for small networks. However, In terms of accuracy mAP, YOLO was not the state of the art model but has fairly good Mean average Precision (mAP) of 63% when
    7 min read
    Face recognition using Artificial Intelligence
    The current technology amazes people with amazing innovations that not only make life simple but also bearable. Face recognition has over time proven to be the least intrusive and fastest form of biometric verification. The software uses deep learning algorithms to compare a live captured image to t
    15+ min read
    Deep Face Recognition
    DeepFace is the facial recognition system used by Facebook for tagging images. It was proposed by researchers at Facebook AI Research (FAIR) at the 2014 IEEE Computer Vision and Pattern Recognition Conference (CVPR). In modern face recognition there are 4 steps: DetectAlignRepresentClassify This app
    8 min read
    ML | Face Recognition Using Eigenfaces (PCA Algorithm)
    In 1991, Turk and Pentland suggested an approach to face recognition that uses dimensionality reduction and linear algebra concepts to recognize faces. This approach is computationally less expensive and easy to implement and thus used in various applications at that time such as handwritten recogni
    4 min read
    Emojify using Face Recognition with Machine Learning
    In this article, we will learn how to implement a modification app that will show an emoji of expression which resembles the expression on your face. This is a fun project based on computer vision in which we use an image classification model in reality to classify different expressions of a person.
    7 min read
    Object Detection with Detection Transformer (DETR) by Facebook
    Facebook has just released its State of the art object detection Model on 27 May 2020. They are calling it DERT stands for Detection Transformer as it uses transformers to detect objects.This is the first time that transformer is used for such a task of Object detection along with a Convolutional Ne
    7 min read

    Image Segmentation

    Image Segmentation Using TensorFlow
    Image segmentation refers to the task of annotating a single class to different groups of pixels. While the input is an image, the output is a mask that draws the region of the shape in that image. Image segmentation has wide applications in domains such as medical image analysis, self-driving cars,
    7 min read
    Thresholding-Based Image Segmentation
    Image segmentation is the technique of subdividing an image into constituent sub-regions or distinct objects. The level of detail to which subdivision is carried out depends on the problem being solved. That is, segmentation should stop when the objects or the regions of interest in an application h
    7 min read
    Region and Edge Based Segmentation
    Segmentation Segmentation is the separation of one or more regions or objects in an image based on a discontinuity or a similarity criterion. A region in an image can be defined by its border (edge) or its interior, and the two representations are equal. There are prominently three methods of perfor
    4 min read
    Image Segmentation with Watershed Algorithm - OpenCV Python
    Image segmentation is a fundamental computer vision task that involves partitioning an image into meaningful and semantically homogeneous regions. The goal is to simplify the representation of an image or make it more meaningful for further analysis. These segments typically correspond to objects or
    9 min read
    Mask R-CNN | ML
    The article provides a comprehensive understanding of the evolution from basic Convolutional Neural Networks (CNN) to the sophisticated Mask R-CNN, exploring the iterative improvements in object detection, instance segmentation, and the challenges and advantages associated with each model. What is R
    9 min read

    3D Reconstruction

    Python OpenCV - Depth map from Stereo Images
    OpenCV is the huge open-source library for the computer vision, machine learning, and image processing and now it plays a major role in real-time operation which is very important in today’s systems.Note: For more information, refer to Introduction to OpenCV Depth Map : A depth map is a picture wher
    2 min read
    Top 7 Modern-Day Applications of Augmented Reality (AR)
    Augmented Reality (or AR), in simpler terms, means intensifying the reality of real-time objects which we see through our eyes or gadgets like smartphones. You may think, How is it trending a lot? The answer is that it can offer an unforgettable experience, either of learning, measuring the three-di
    10 min read
    Virtual Reality, Augmented Reality, and Mixed Reality
    Virtual Reality (VR): The word 'virtual' means something that is conceptual and does not exist physically and the word 'reality' means the state of being real. So the term 'virtual reality' is itself conflicting. It means something that is almost real. We will probably never be on the top of Mount E
    3 min read
    Camera Calibration with Python - OpenCV
    Prerequisites: OpenCV A camera is an integral part of several domains like robotics, space exploration, etc camera is playing a major role. It helps to capture each and every moment and helpful for many analyses. In order to use the camera as a visual sensor, we should know the parameters of the cam
    4 min read
    Python OpenCV - Pose Estimation
    What is Pose Estimation? Pose estimation is a computer vision technique that is used to predict the configuration of the body(POSE) from an image. The reason for its importance is the abundance of applications that can benefit from technology.  Human pose estimation localizes body key points to accu
    7 min read
    40+ Top Computer Vision Projects [2025 Updated]
    Computer Vision is a branch of Artificial Intelligence (AI) that helps computers understand and interpret context of images and videos. It is used in domains like security cameras, photo editing, self-driving cars and robots to recognize objects and navigate real world using machine learning.This ar
    4 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences