Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
    • Practice Coding Problems
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Number System and Arithmetic
  • Algebra
  • Set Theory
  • Probability
  • Statistics
  • Geometry
  • Calculus
  • Logarithms
  • Mensuration
  • Matrices
  • Trigonometry
  • Mathematics
Open In App
Next Article:
Trigonometric Graph
Next article icon

Trigonometric Graph

Last Updated : 02 Dec, 2024
Comments
Improve
Suggest changes
Like Article
Like
Report

Trigonometric functions study the relationship between the lengths, heights, and angles of right triangles. As the name implies, trigonometry is referred to as the study of triangles.

There are six trigonometric ratios or functions, which are one of the simplest periodic functions. Sine, cosine, and tangent functions are the most widely used trigonometric functions, whereas their reciprocal functions, cosecant, secant, and cotangent functions, are used less.

Here, we will discuss graphs of various Trigonometric functions.

Table of Content

  • Sine Function
  • Cosine Function
  • Tangent Function
  • Cotangent Function
  • Cosecant Function
  • Secant Function
  • Important Features of Graphs of Trigonometric Functions
    • Graph of the General Form of Trigonometric Functions
  • How to Graph a Trigonometric Function?

Sine Function

A sine function is denoted as "sin" and is defined as the ratio of the length of the opposite side/perpendicular to the length of the hypotenuse to the given angle.

sin θ = Opposite side/Hypotenuse

Now, let's plot the sine function's graph using the standard trigonometric values. 

θ

-360°

-270°

-180°

-90°

 0° 

 30° 

  45° 

60°

 90°

180°

 270° 

 360° 

y = sin θ

0

1

0

−1

0

1/2=0.5 

 1/√2=0.707 

 √3/2=0.8660

1

0

−1

0

In the graph of the sine function, the values of angles (degrees) are taken on the X-axis while the values of y = sin θ at each given angle are taken on the Y-axis. A sine function is defined for every real number, which means the domain of the sine function is (-∞, +∞).

Graph of Sine Function

From the graph, we can observe that the maximum value of the sine function is 1, while its minimum value is -1. So, the amplitude of the sine function is half of the distance between the maximum value and the minimum value.

As a result, the amplitude is one [(1 - (-1))/2 = 1]. From the graph, we can also observe that the pattern is repeating over and over after a period of 2π.

We can notice that the graph is passing through the X-axis where the value of θ is multiples of π, so the roots or zeros of the sine function are the multiples of π. At each point, the height of the curve is equal to the sine of the line value.

Domain

 (-∞, + ∞) 

Range

[-1, +1]

Minimum value

 −1 

Maximum value

1

Amplitude

1

 Period

2π

X−intercept

 x=nπ, ∀n 

Y−intercept

y = 0

 Line of symmetry 

Origin

Type of function

Odd function

Cosine Function

A cosine function is denoted as "cos" and is defined as the ratio of the length of the adjacent side/base to the length of the hypotenuse to the given angle.

cos θ = Adjacent side/Hypotenuse

Now, let's plot the graph of the cosine function using the standard values of trigonometric functions. 

θ

-360°

-270°

-180°

-90°

 0°

30°

45°

60°

90°

180°

270°

 360°

y = cos θ

1

0

1

0

1

√3/2=0.8660

1/√2=0.707

1/2=0.5

0

−1

0

1

In the graph of the cosine function, the values of angles (degrees) are taken on the X-axis while the values of y = cos θ at each given angle are taken on the Y-axis. A cosine function is defined for every real number, which means the domain of the cosine function is (-∞, +∞).

Graph of Cosine Function

From the graph, we can observe that the maximum value of the cosine function is 1, while its minimum value is -1. The amplitude of the cosine function is one and the period is 2π.

We can notice that the graph is passing through the X-axis where the value of θ is an odd multiple of π/2, so the roots or zeros of the cosine function are the odd multiples of π/2. By comparing the graphs of the sine and cosine functions, we can observe that the graph of the cosine function is obtained after shifting the graph of y = sin θ to π/2 units to the left.

Domain

(-∞, + ∞)

Range

[-1, +1]

 Minimum value 

−1

Maximum value

1

Amplitude

1

Period

2π

X−intercept

x = (2n + 1)π/2, ∀n

Y−intercept

y = 1

Line of symmetry

Y-axis

Type of function

Even function

Tangent Function

A tangent function is denoted as "tan" and is defined as the ratio of the length of the opposite side/perpendicular to the length of the adjacent side/base to the given angle.

tan θ = Opposite side/Adjacent side = sin θ/cos θ

Now, let's plot the graph of the tangent function using the standard values of trigonometric functions. 

θ

-360°

-270°

-180°

-90°

0°

30°

45°

60°

90°

180°

270°

360°

 y = tan θ 

0

undefined

0

undefined

0

1/√3

1

√3

undefined

0

undefined

0

In the graph of the tangent function, the values of angles (degrees) are taken on the X-axis while the values of y = tan θ at each given angle are taken on the Y-axis. A tangent function is defined for every real number, except at the values where the cosine function is zero. We know that a cosine function is zero at the odd multiples of π/2, so the domain of the tangent function is R - (2n + 1)π/2.

Graph of Tangent Function

The amplitude of the graph of a tangent function is undefined as the curve does not have a maximum or a minimum value and tends to infinity. As the curve repeats after an interval of π, the period of the tangent function is π. 

 Domain 

 R - (2n + 1)π/2 

Range

(-∞, +∞)

Period

π

 X−intercept 

 x=nπ, ∀n

 Y−intercept 

y=0

 Line of symmetry 

Origin

 Vertical asymptotes 

x = (2n + 1)π/2

Type of function

Odd function

Cotangent Function

A cotangent function is denoted as "cot" and is defined as the ratio of the length of the adjacent side/base to the length of the opposite side/perpendicular to the given angle.

cot θ = Adjacent side/Opposite side = cos θ/sin θ

Now, let's plot the graph of the cotangent function using the standard values of trigonometric functions. 

θ

-360°

-270°

-180°

-90°

0°

30°

45°

60°

90°

180°

270°

360°

 y = cot θ 

undefined

0

undefined

0

undefined

1/√3

1

√3

0

undefined

0

undefined

In the graph of the cotangent function, the values of angles (degrees) are taken on the X-axis while the values of y = cot θ at each given angle are taken on the Y-axis. A cotangent function is defined for every real number, except at the values where the sine function is zero. We know that a sine function is zero at the multiples of π, so the domain of the cotangent function is R - nπ.

Graph of Cotangent Function

The amplitude of the graph of a cotangent function is undefined as the curve does not have a maximum or a minimum value and tends to infinity. As the curve repeats after an interval of π, the period of the cotangent function is π. 

Domain

R - nπ

Range

(-∞, +∞)

Period

π

 X−intercept

 x = (2n + 1)π/2, ∀n 

Y−intercept

 not applicable 

 Line of symmetry 

Origin

 Vertical asymptotes 

x = nπ

Type of function

Odd function

Cosecant Function

A cosecant function is denoted as "csc or cosec" and is defined as the ratio of the length of the hypotenuse to the length of the opposite side/perpendicular to the given angle.

cosec θ = Hypotenuse/Opposite side = 1/sin θ

Now, let's plot the graph of the cosecant function using the standard values of trigonometric functions.

θ

-360°

-270°

-180°

-90°

0°

30°

45°

60°

90°

180°

270°

360°

y = csc θ

undefined

1

undefined

−1

undefined

2

√2

2/√3

1

undefined

−1

undefined

In the graph of the cosecant function, the values of angles (degrees) are taken on the X-axis while the values of y = csc θ at each given angle are taken on the Y-axis. A cosecant function is defined for every real number, except at the values where the sine function is zero. We know that a sine function is zero at the multiples of π, so the domain of the cosecant function is R - nπ.

Graph of Cosec Function

The amplitude of the graph of a cosecant function is undefined as the curve does not have a maximum or a minimum value and tends to infinity. As the curve repeats after an interval of 2π, the period of the cosecant function is 2π. 

Domain

R - nπ

Range

 (-∞, -1] U [+1, +∞) 

Period

2π

 X−intercept

 not applicable

Y−intercept

not applicable

 Line of symmetry 

Origin

 Vertical asymptotes

x = nπ

Type of function

 Odd function 

Secant Function

A secant function is denoted as "sec" and is defined as the ratio of the length of the hypotenuse to the length of the adjacent side/base to the given angle.

sec θ = Hypotenuse/Adjacent side = 1/cos θ

Now, let's plot the graph of the secant function using the standard values of trigonometric functions.

θ

-360°

-270°

-180°

-90°

0°

30°

45°

60°

90°

180°

270°

360°

y = sec θ

1

undefined

−1

undefined

1

2/√3

√2

2

undefined

−1

undefined

1

In the graph of the secant function, the values of angles (degrees) are taken on the X-axis while the values of y = sec θ at each given angle are taken on the Y-axis. A secant function is defined for every real number, except at the values where the cosine function is zero. We know that a cosine function is zero at the odd multiples of π/2, so the domain of the secant function is R - (2n + 1)π/2.

Secant Graph

The amplitude of the graph of a secant function is undefined as the curve does not have a maximum or a minimum value and tends to infinity. As the curve repeats after an interval of 2π, the period of the secant function is 2π. 

 Domain 

R - (2n + 1)π/2

Range

(-∞, -1] U [+1, +∞)

Period

2π

X−intercept

not applicable

Y−intercept

y = 1

 Line of symmetry 

Y-axis

 Vertical asymptotes 

x = (2n + 1)π/2

Type of function

Even function 

Important Features of Graphs of Trigonometric Functions

For every trigonometric graph, there are important features: amplitude, vertical shift, period, phase, and phase shift.

  • Amplitude: Amplitude is half of the distance between the maximum value and the minimum value, or the height of the curve from the center line.
  • Vertical Shift: The displacement of the graph perpendicular to the x-axis is known as vertical shift. 
  • Period: The period is the distance between the repetitions of any function.
  • Phase: The position of the waveform at a fraction of a period is referred to as its phase, and it is expressed in angles or radians.
  • Phase Shift: The displacement of the graph perpendicular to the y-axis is known as phase shift.

Have a look at the features mentioned above on the graph, as shown below.

Features of Graphs of Trigonometric Functions

Graph of the General Form of Trigonometric Functions

The general form of a sine function is given as follows:

 y = a sin (bx + c) + d

Where,

  • |a| = Amplitude (the value of "a" alters, the graph will stretch or compress accordingly),
  • 2π/|b| = Period,
  • c/b = Phase shift, and
  • d = Vertical shift.

How to Graph a Trigonometric Function?

To graph a trigonometric function, follow the steps mentioned below:

  • Step 1: To draw the graph of a trigonometric function, convert it into its general form, y = a sin (bx + c) + d.
  • Step 2: Now, identify the different parameters such as amplitude, phase shift, vertical shift, and period.
  • Step 3: The value of the period is 2π/|b| for sine and cosine functions, whereas for tangent and cotangent functions it is π/|b|. Phase shift = -c/b.
  • Step 4: Finally, plot the graph using the parameters calculated above.

Next Article: Application of Trigonometry in Real Life.

Read: Trigonometry Complete Tutorial

Solved Examples on Trigonometry Graphs

Example 1: Draw the graph of y = 3 cos 4x + 5.

Solution:

Given: y = 3 cos 4x + 5

Now, compare the given equation with the general form y = a cos (bx + c) + d,

  • a = 3, which means the amplitude is 3. (So, the distance between the maximum and minimum value is 6)
  • b = 4. Period = 2π/|b| = 2π/|4| = π/2
  • c = 0, so there is no phase shift.
  • d = 5, which means the graph moved upwards by 5 units.

The graph of y = 3 cos 4x + 5 is given below:

Example 1

Example 2: Draw the graph of y = cosec x + 3.

Solution:

Given: y = cosec x + 3

  • We know that the amplitude of the graph of a cosecant function is undefined as the curve tends to infinity.
  • Period = 2π/|b| = 2π/|1| = 2π
  • Here, there is no phase shift.
  • The graph moved upwards by 3 units.

The graph of y = cosec x + 3 is given below:

Example 2

Example 3: Draw the graph of y = sin (2x −π) + 2.

Solution:

Given: y = sin (2x − π) + 2

Now, compare the given equation with the general form y = a sin (bx + c) + d,

  • a = 1, which means the amplitude is 1. (So, the distance between the maximum and minimum value is 2)
  • b = 2. Period = 2π/|2| = 2π/|2| = π
  • c = −π. Phase shift = −c/b = − (−π)/2 = π/2
  • d = 2, which means the graph moved upwards by 2 units.

The graph of y = sin (2x −π) + 2 is given below:

Example 3

Example 4: Draw the graph of y = tan x + 1.

Solution:

Given: y = tan x + 1

  • We know that the amplitude of the graph of a tangent function is undefined as the curve does not have a maximum or a minimum value and tends to infinity.
  • Period = π/|1| = π/|1| = π
  • Here, there is no phase shift.
  • The graph moved upwards by 1 unit.

The graph of y = tan x + 1 is given below:

Example 4

Example 5: Draw the graph of y = 2 sin x + 3.

Solution:

Given: y = 2 sin x + 3

Now, compare the given equation with the general form y = a sin (bx + c) + d,

a = 2, which means the amplitude is 2. (So, the distance between the maximum and minimum value is 2)
b = 1. Period = 2π/|1| = 2π/|1| = 2π
c = 0, so there is no phase shift.
d = 3, which means the graph moved upwards by 3 units.

The graph of y = 2 sin x + 3 is given below:

Example 5

Read More,

  • Trigonometric Identities
  • Trigonometric Functions
  • Domain and Range of Trigonometric Functions

Next Article
Trigonometric Graph

K

kiran086472
Improve
Article Tags :
  • Mathematics
  • School Learning
  • Class 11
  • Maths-Class-11

Similar Reads

    Trigonometric Ratios
    There are three sides of a triangle Hypotenuse, Adjacent, and Opposite. The ratios between these sides based on the angle between them is called Trigonometric Ratio. The six trigonometric ratios are: sine (sin), cosine (cos), tangent (tan), cotangent (cot), cosecant (cosec), and secant (sec).As give
    4 min read
    Trigonometric Cheat Sheet
    Trigonometry is the branch of mathematics that studies the relationships between the angles and sides of triangles. However, trigonometry can also be challenging to learn and remember, especially when dealing with complex problems and formulas. That is why having a trigonometric cheat sheet can be v
    8 min read
    Trigonometry in Math
    We use trigonometry in many everyday situations, often without even noticing. Construction and Architecture: Trigonometry helps calculate angles and heights when designing buildings, bridges, and roads. For example, architects use it to determine roof slopes or the angle of staircases.Navigation: Pi
    3 min read
    Trigonometric Symbols
    Trigonometric Symbols are the symbols that are used in trigonometry and help to solve various problems. The trigonometric symbols are used to represent various trigonometric ratios. Trigonometry is a branch of mathematics that explores the relationships between the ratios of the sides of a right-ang
    3 min read
    Trigonometric Functions
    Trigonometric Functions, often simply called trig functions, are mathematical functions that relate the angles of a right triangle to the ratios of the lengths of its sides.Trigonometric functions are the basic functions used in trigonometry and they are used for solving various types of problems in
    6 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences