Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
    • Practice Coding Problems
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • DSA
  • Interview Problems on Tree
  • Practice Tree
  • MCQs on Tree
  • Tutorial on Tree
  • Types of Trees
  • Basic operations
  • Tree Traversal
  • Binary Tree
  • Complete Binary Tree
  • Ternary Tree
  • Binary Search Tree
  • Red-Black Tree
  • AVL Tree
  • Full Binary Tree
  • B-Tree
  • Advantages & Disadvantages
Open In App
Next Article:
Symmetric Tree (Mirror Image of itself)
Next article icon

Symmetric Tree (Mirror Image of itself)

Last Updated : 07 Jun, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report
Try it on GfG Practice
redirect icon

Given a binary tree, the task is to check whether it is a mirror of itself.

Example:

Input: root[] = [1, 2, 2, 3, 4, 4, 3]
ex-1_1Output: True
Explanation: Tree is mirror image of itself i.e. tree is symmetric.

Input: root[] = [1, 2, 2, N, 3, N, 3]
ex-2_1Output: False
Explanation: Tree is not mirror image of itself i.e. tree is not symmetric.

Table of Content

  • [Approach - 1] Using Recursion - O(n) Time and O(h) Space
  • [Approach - 2] Using Stack - O(n) Time and O(h) Space
  • [Approach - 3] Using Queue - O(n) Time and O(n) Space

[Approach - 1] Using Recursion - O(n) Time and O(h) Space

The idea is to recursively compare the left and right subtrees of the root. For the tree to be symmetric, the root values of the left and right subtrees must match, and their corresponding children must also be mirrors.

C++
// C++ program to check if a given Binary // Tree is symmetric  #include <iostream> using namespace std;  class Node { public:     int data;     Node *left, *right;      Node(int val) {         data = val;         left = right = nullptr;     } };  // Recursive helper function to check if two subtrees are mirror images bool isMirror(Node* leftSub, Node* rightSub) {          // Both are null, so they are mirror images     if (leftSub == nullptr && rightSub == nullptr)          return true;          // One of them is null, so they aren't mirror images     if (leftSub == nullptr || rightSub == nullptr ||          			leftSub->data != rightSub->data) {         return false;     }          // Check if the subtrees are mirrors     return isMirror(leftSub->left, rightSub->right) &&            isMirror(leftSub->right, rightSub->left); }  bool isSymmetric(Node* root) {          // If tree is empty, it's symmetric     if (root == nullptr)          return true;          // Check if the left and right subtrees are    	// mirrors of each other     return isMirror(root->left, root->right); }  int main() {          // Creating a sample symmetric binary tree     //        1     //       / \     //      2   2     //     / \ / \     //    3  4 4  3     Node* root = new Node(1);     root->left = new Node(2);     root->right = new Node(2);     root->left->left = new Node(3);     root->left->right = new Node(4);     root->right->left = new Node(4);     root->right->right = new Node(3);      if(isSymmetric(root)) 		cout << "true";   	else        	cout << "false";          return 0; } 
Java
// Java program to check if a given  // Binary Tree is symmetric  class Node {     int data;     Node left, right;      Node(int val) {         data = val;         left = right = null;     } }  class GfG{      // Recursive helper function to check if two subtrees are mirror images     static boolean isMirror(Node leftSub, Node rightSub) {                // Both are null, so they are mirror images         if (leftSub == null && rightSub == null)             return true;          // One of them is null, so they aren't mirror images         if (leftSub == null || rightSub == null              			|| leftSub.data != rightSub.data)             return false;          // Check if the subtrees are mirrors         return isMirror(leftSub.left, rightSub.right) &&                 isMirror(leftSub.right, rightSub.left);     }      static boolean isSymmetric(Node root) {         // If tree is empty, it's symmetric         if (root == null)             return true;          // Check if the left and right subtrees are mirrors of each other         return isMirror(root.left, root.right);     }      public static void main(String[] args) {         // Creating a sample symmetric binary tree         //        1         //       / \         //      2   2         //     / \ / \         //    3  4 4  3         Node root = new Node(1);         root.left = new Node(2);         root.right = new Node(2);         root.left.left = new Node(3);         root.left.right = new Node(4);         root.right.left = new Node(4);         root.right.right = new Node(3);          if (isSymmetric(root))             System.out.println("true");         else             System.out.println("false");     } } 
Python
# Python program to check if a given  # Binary Tree is symmetric  class Node:     def __init__(self, data):         self.data = data         self.left = None         self.right = None  # Recursive helper function to check if two subtrees are mirror images def isMirror(leftSub, rightSub):        # Both are null, so they are mirror images     if leftSub is None and rightSub is None:         return True      # One of them is null, so they aren't mirror images     if leftSub is None or rightSub is None or leftSub.data != rightSub.data:         return False 	     # Check if the subtrees are mirrors     return isMirror(leftSub.left, rightSub.right) and \            isMirror(leftSub.right, rightSub.left)  def isSymmetric(root):        # If tree is empty, it's symmetric     if root is None:         return True      # Check if the left and right subtrees are mirrors of each other     return isMirror(root.left, root.right)  if __name__ == "__main__":     # Creating a sample symmetric binary tree     #        1     #       / \     #      2   2     #     / \ / \     #    3  4 4  3     root = Node(1)     root.left = Node(2)     root.right = Node(2)     root.left.left = Node(3)     root.left.right = Node(4)     root.right.left = Node(4)     root.right.right = Node(3)      print("true" if isSymmetric(root) else "false") 
C#
// C# program to check if a given Binary  // Tree is symmetric  using System;  class Node {     public int data;     public Node left, right;      public Node(int val) {         data = val;         left = right = null;     } }  class GfG {      // Recursive helper function to check if two subtrees are mirror images     static bool isMirror(Node leftSub, Node rightSub) {                // Both are null, so they are mirror images         if (leftSub == null && rightSub == null)             return true;          // One of them is null, so they aren't mirror images         if (leftSub == null || rightSub == null ||              			leftSub.data != rightSub.data)             return false;          // Check if the subtrees are mirrors         return isMirror(leftSub.left, rightSub.right) &&                 isMirror(leftSub.right, rightSub.left);     }      static bool isSymmetric(Node root) {                // If tree is empty, it's symmetric         if (root == null)             return true;          // Check if the left and right subtrees are mirrors of each other         return isMirror(root.left, root.right);     }      static void Main(string[] args) {         // Creating a sample symmetric binary tree         //        1         //       / \         //      2   2         //     / \ / \         //    3  4 4  3         Node root = new Node(1);         root.left = new Node(2);         root.right = new Node(2);         root.left.left = new Node(3);         root.left.right = new Node(4);         root.right.left = new Node(4);         root.right.right = new Node(3);          Console.WriteLine(isSymmetric(root) ? "true" : "false");     } } 
JavaScript
// JavaScript program to check if a given  // Binary Tree is symmetric  class Node {     constructor(data) {         this.data = data;         this.left = null;         this.right = null;     } }  // Recursive helper function to check if two subtrees are mirror images function isMirror(leftSub, rightSub) {     // Both are null, so they are mirror images     if (leftSub === null && rightSub === null)          return true;      // One of them is null, so they aren't mirror images     if (leftSub === null || rightSub === null || leftSub.data !== rightSub.data)         return false;      // Check if the subtrees are mirrors     return isMirror(leftSub.left, rightSub.right) &&             isMirror(leftSub.right, rightSub.left); }  function isSymmetric(root) {     // If tree is empty, it's symmetric     if (root === null)          return true;      // Check if the left and right subtrees are mirrors of each other     return isMirror(root.left, root.right); }  // Creating a sample symmetric binary tree //        1 //       / \ //      2   2 //     / \ / \ //    3  4 4  3 const root = new Node(1); root.left = new Node(2); root.right = new Node(2); root.left.left = new Node(3); root.left.right = new Node(4); root.right.left = new Node(4); root.right.right = new Node(3);  console.log(isSymmetric(root) ? "true" : "false"); 

Output
true

[Approach - 2] Using Stack - O(n) Time and O(h) Space

The idea is to use two stack to check if a binary tree is symmetric. One stack is for the left side of the tree, and the other is for the right side. By comparing nodes from both stack at each level, we can check if the left and right sides are mirror images of each other.

Step-by-Step Implementation:

  • Create a two stacks, say s1 and s2 and push the left child of the root node in s1 and right child of the root node into s2.
  • While both the stack are not empty, repeat the following steps:
    • Pop two nodes from the stack, say node1 and node2.
    • If both node1 and node2 are null, continue to the next iteration.
    • If one of the nodes is null and the other is not, return false as it is not a mirror.
    • If both nodes are not null, compare their values. If they are not equal, return false.
    • Push the left child of node1 and the right child of node2 onto the stack.
    • Push the right child of node1 and the left child of node2 onto the stack.
  • If the loop completes successfully without returning false, return true as it is a mirror.
C++
// C++ program to check if a given Binary // Tree is symmetric  #include <iostream> #include <stack> using namespace std;  class Node { public:     int data;     Node *left, *right;      Node(int val) {         data = val;         left = right = nullptr;     } };  // Function to check if the binary tree is symmetric bool isSymmetric(Node* root) {     if (root == nullptr)          return true;      // Two stacks to store nodes for comparison     stack<Node*> s1, s2;      // Initialize the stacks with the left    	// and right subtrees     s1.push(root->left);     s2.push(root->right);      while (!s1.empty() && !s2.empty()) {                  // Get the current pair of nodes         Node* node1 = s1.top();         Node* node2 = s2.top();         s1.pop();         s2.pop();          // If both nodes are null, continue to the next pair         if (node1 == nullptr && node2 == nullptr) {             continue;         }          // If one node is null and the other is not,        	// or the nodes' data do not match         // then the tree is not symmetric         if (node1 == nullptr || node2 == nullptr              || node1->data != node2->data) {             return false;         }          // Push children of node1 and node2 in opposite order         // Push left child of node1 and right child of node2         s1.push(node1->left);         s2.push(node2->right);          // Push right child of node1 and left child of node2         s1.push(node1->right);         s2.push(node2->left);     }      // If both stacks are empty, the tree is symmetric     return s1.empty() && s2.empty(); }  int main() {          // Creating a sample symmetric binary tree     //        1     //       / \     //      2   2     //     / \ / \     //    3  4 4  3     Node* root = new Node(1);     root->left = new Node(2);     root->right = new Node(2);     root->left->left = new Node(3);     root->left->right = new Node(4);     root->right->left = new Node(4);     root->right->right = new Node(3);      if(isSymmetric(root))        	cout << "true";   	else        	cout << "false";      return 0; } 
Java
// Java program to check if a given Binary  // Tree is symmetric  import java.util.Stack;  class Node {     int data;     Node left, right;      Node(int val) {         data = val;         left = right = null;     } }  class GfG {        // Function to check if the binary tree is symmetric     static boolean isSymmetric(Node root) {         if (root == null) {             return true;         }          // Two stacks to store nodes for comparison         Stack<Node> s1 = new Stack<>();         Stack<Node> s2 = new Stack<>();          // Initialize the stacks with the left       	// and right subtrees         s1.push(root.left);         s2.push(root.right);          while (!s1.isEmpty() && !s2.isEmpty()) {              // Get the current pair of nodes             Node node1 = s1.pop();             Node node2 = s2.pop();              // If both nodes are null, continue to the next pair             if (node1 == null && node2 == null) {                 continue;             }              // If one node is null and the other is not,            	// or the nodes' data do not match             // then the tree is not symmetric             if (node1 == null || node2 == null                  || node1.data != node2.data) {                 return false;             }              // Push children of node1 and node2 in opposite order             // Push left child of node1 and right child of node2             s1.push(node1.left);             s2.push(node2.right);              // Push right child of node1 and left child of node2             s1.push(node1.right);             s2.push(node2.left);         }          // If both stacks are empty, the tree is symmetric         return s1.isEmpty() && s2.isEmpty();     }      public static void main(String[] args) {                // Creating a sample symmetric binary tree         //        1         //       / \         //      2   2         //     / \ / \         //    3  4 4  3         Node root = new Node(1);         root.left = new Node(2);         root.right = new Node(2);         root.left.left = new Node(3);         root.left.right = new Node(4);         root.right.left = new Node(4);         root.right.right = new Node(3);          System.out.println(isSymmetric(root));     } } 
Python
# Python program to check if a given  # Binary Tree is symmetric  class Node:     def __init__(self, val):         self.data = val         self.left = self.right = None  # Function to check if the binary tree is symmetric def isSymmetric(root):     if root is None:         return True      # Two stacks to store nodes for comparison     s1 = []     s2 = []      # Initialize the stacks with the      # left and right subtrees     s1.append(root.left)     s2.append(root.right)      while s1 and s2:                # Get the current pair of nodes         node1 = s1.pop()         node2 = s2.pop()          # If both nodes are null, continue to the next pair         if node1 is None and node2 is None:             continue          # If one node is null and the other is not,          # or the nodes' data do not match         # then the tree is not symmetric         if node1 is None or node2 is None or node1.data != node2.data:             return False          # Push children of node1 and node2 in opposite order         # Push left child of node1 and right child of node2         s1.append(node1.left)         s2.append(node2.right)          # Push right child of node1 and left child of node2         s1.append(node1.right)         s2.append(node2.left)      # If both stacks are empty, the tree is symmetric     return len(s1) == 0 and len(s2) == 0  if __name__ == "__main__":        # Creating a sample symmetric binary tree     #        1     #       / \     #      2   2     #     / \ / \     #    3  4 4  3     root = Node(1)     root.left = Node(2)     root.right = Node(2)     root.left.left = Node(3)     root.left.right = Node(4)     root.right.left = Node(4)     root.right.right = Node(3)      print(isSymmetric(root)) 
C#
// C# program to check if a given Binary // Tree is symmetric  using System; using System.Collections.Generic;  class Node {     public int data;     public Node left, right;      public Node(int val) {         data = val;         left = right = null;     } }  class GfG {        // Function to check if the binary tree is symmetric     static bool isSymmetric(Node root) {         if (root == null) {             return true;         }          // Two stacks to store nodes for comparison         Stack<Node> s1 = new Stack<Node>();         Stack<Node> s2 = new Stack<Node>();          // Initialize the stacks with the left       	// and right subtrees         s1.Push(root.left);         s2.Push(root.right);          while (s1.Count > 0 && s2.Count > 0) {                        // Get the current pair of nodes             Node node1 = s1.Pop();             Node node2 = s2.Pop();              // If both nodes are null, continue to the next pair             if (node1 == null && node2 == null) {                 continue;             }              // If one node is null and the other is not,            	// or the nodes' data do not match             // then the tree is not symmetric             if (node1 == null || node2 == null                  || node1.data != node2.data) {                 return false;             }              // Push children of node1 and node2 in opposite order             // Push left child of node1 and right child of node2             s1.Push(node1.left);             s2.Push(node2.right);              // Push right child of node1 and left child of node2             s1.Push(node1.right);             s2.Push(node2.left);         }          // If both stacks are empty, the tree is symmetric         return s1.Count == 0 && s2.Count == 0;     }      static void Main(string[] args) {                // Creating a sample symmetric binary tree         //        1         //       / \         //      2   2         //     / \ / \         //    3  4 4  3         Node root = new Node(1);         root.left = new Node(2);         root.right = new Node(2);         root.left.left = new Node(3);         root.left.right = new Node(4);         root.right.left = new Node(4);         root.right.right = new Node(3);          Console.WriteLine(isSymmetric(root));     } } 
JavaScript
// JavaScript program to check if a // given Binary Tree is symmetric  class Node {     constructor(val) {         this.data = val;         this.left = this.right = null;     } }  // Function to check if the binary tree is symmetric function isSymmetric(root) {     if (root === null) {         return true;     }      // Two stacks to store nodes for comparison     let s1 = [];     let s2 = [];      // Initialize the stacks with the      // left and right subtrees     s1.push(root.left);     s2.push(root.right);      while (s1.length > 0 && s2.length > 0) {              // Get the current pair of nodes         let node1 = s1.pop();         let node2 = s2.pop();          // If both nodes are null, continue to the next pair         if (node1 === null && node2 === null) {             continue;         }          // If one node is null and the other is not,         // or the nodes' data do not match         // then the tree is not symmetric         if (node1 === null || node2 === null          	|| node1.data !== node2.data) {             return false;         }          // Push children of node1 and node2 in opposite order         // Push left child of node1 and right child of node2         s1.push(node1.left);         s2.push(node2.right);          // Push right child of node1 and left child of node2         s1.push(node1.right);         s2.push(node2.left);     }      // If both stacks are empty, the tree is symmetric     return s1.length === 0 && s2.length === 0; }  // Creating a sample symmetric binary tree //        1 //       / \ //      2   2 //     / \ / \ //    3  4 4  3 let root = new Node(1); root.left = new Node(2); root.right = new Node(2); root.left.left = new Node(3); root.left.right = new Node(4); root.right.left = new Node(4); root.right.right = new Node(3);  console.log(isSymmetric(root)); 

Output
true

[Approach - 3] Using Queue - O(n) Time and O(n) Space

The basic idea is to check if the left and right subtrees of the root node are mirror images of each other. To do this, we perform a level-order traversal of the binary tree using a queue. Initially, we push the root node into the queue twice. We dequeue two nodes at a time from the front of the queue and check if they are mirror images of each other.

Step-by-Step implementation:

  • If the root node is NULL, return true as an empty binary tree is considered symmetric.
  • Create a queue and push the left and right child of root node into the queue.
  • While the queue is not empty, dequeue two nodes at a time, one for the left subtree and one for the right subtree.
    • If both the left and right nodes are NULL, continue to the next iteration as the subtrees are considered mirror images of each other.
    • If either the left or right node is NULL, or their data is not equal, return false as they are not mirror images of each other.
    • Push the left and right nodes of the left subtree into the queue, followed by the right and left nodes of the right subtree into the queue.
  • If the queue becomes empty and we have not returned false till now, return true as the binary tree is symmetric.
C++
// C++ program to check if a given Binary  // Tree is symmetric #include <bits/stdc++.h> using namespace std;  class Node { public:     int data;     Node *left, *right;      Node(int val) {         data = val;         left = right = nullptr;     } };  // Function to check if the binary tree is symmetric bool isSymmetric(Node* root) {     if (root == nullptr) {         return true;     }      // Use a queue to store nodes for comparison     queue<Node*> q;      // Initialize the queue with the left    	// and right subtrees     q.push(root->left);     q.push(root->right);      while (!q.empty()) {                  Node* node1 = q.front();          q.pop();         Node* node2 = q.front();         q.pop();          // If both nodes are null, continue to the next pair         if (node1 == nullptr && node2 == nullptr) {             continue;         }          // If one node is null and the other is not,          // or the nodes' data do not match         // then the tree is not symmetric         if (node1 == nullptr || node2 == nullptr ||              node1->data != node2->data) {             return false;         }          // Enqueue children in opposite        	// order to compare them         q.push(node1->left);         q.push(node2->right);         q.push(node1->right);         q.push(node2->left);     }      // If the loop completes without      // returning false, the tree is symmetric     return true; }  int main() {          // Creating a sample symmetric binary tree     //        1     //       / \     //      2   2     //     / \ / \     //    3  4 4  3     Node* root = new Node(1);     root->left = new Node(2);     root->right = new Node(2);     root->left->left = new Node(3);     root->left->right = new Node(4);     root->right->left = new Node(4);     root->right->right = new Node(3);    	if(isSymmetric(root)) {       cout << "true";     }   	else cout << "false";      return 0; } 
Java
// Java program to check if a given // Binary Tree is symmetric import java.util.LinkedList; import java.util.Queue;  class Node {     int data;     Node left, right;      Node(int val) {         data = val;         left = right = null;     } }  class GfG {        // Function to check if the binary tree is symmetric     static boolean isSymmetric(Node root) {         if (root == null) {             return true;         }          // Use a queue to store nodes for comparison         Queue<Node> q = new LinkedList<>();          // Initialize the queue with the left and right subtrees         q.offer(root.left);         q.offer(root.right);          while (!q.isEmpty()) {                        Node node1 = q.poll();             Node node2 = q.poll();              // If both nodes are null, continue to the next pair             if (node1 == null && node2 == null) {                 continue;             }              // If one node is null and the other is not,              // or the nodes' data do not match             // then the tree is not symmetric             if (node1 == null || node2 == null ||                  node1.data != node2.data) {                 return false;             }              // Enqueue children in opposite order to compare them             q.offer(node1.left);             q.offer(node2.right);             q.offer(node1.right);             q.offer(node2.left);         }          // If the loop completes without          // returning false, the tree is symmetric         return true;     }      public static void main(String[] args) {                // Creating a sample symmetric binary tree         //        1         //       / \         //      2   2         //     / \ / \         //    3  4 4  3         Node root = new Node(1);         root.left = new Node(2);         root.right = new Node(2);         root.left.left = new Node(3);         root.left.right = new Node(4);         root.right.left = new Node(4);         root.right.right = new Node(3);         if (isSymmetric(root))             System.out.println("true");         else             System.out.println("false");     } } 
Python
from collections import deque  # Definition for a binary tree node class TreeNode:     def __init__(self, val=0, left=None, right=None):         self.val = val         self.left = left         self.right = right  # Function to check if the binary tree is symmetric def isSymmetric(root):     if root is None:         return True      # Use a queue to store nodes for comparison     q = deque()      # Initialize the queue with the left and right subtrees     q.append(root.left)     q.append(root.right)      while q:         node1 = q.popleft()         node2 = q.popleft()          # If both nodes are None, continue         if node1 is None and node2 is None:             continue          # If only one is None or values don't match, it's not symmetric         if node1 is None or node2 is None or node1.val != node2.val:             return False          # Enqueue children in opposite order         q.append(node1.left)         q.append(node2.right)         q.append(node1.right)         q.append(node2.left)      return True  if __name__ == "__main__":          # Example symmetric tree     #        1     #      /   \     #     2     2     #    / \   / \     #   3   4 4   3          root = TreeNode(1)     root.left = TreeNode(2, TreeNode(3), TreeNode(4))     root.right = TreeNode(2, TreeNode(4), TreeNode(3))          print("true" if isSymmetric(root) else "false") 
C#
// C# program to check if a given Binary // Tree is symmetric using System; using System.Collections.Generic;  class Node {     public int data;     public Node left, right;      public Node(int val) {         data = val;         left = right = null;     } }  class GfG {        // Function to check if the binary tree is symmetric     static bool IsSymmetric(Node root) {         if (root == null) {             return true;         }          // Use a queue to store nodes for comparison         Queue<Node> q = new Queue<Node>();          // Initialize the queue with the        	// left and right subtrees         q.Enqueue(root.left);         q.Enqueue(root.right);          while (q.Count > 0) {                        Node node1 = q.Dequeue();             Node node2 = q.Dequeue();              // If both nodes are null,            	// continue to the next pair             if (node1 == null && node2 == null) {                 continue;             }              // If one node is null and the other is not,              // or the nodes' data do not match             // then the tree is not symmetric             if (node1 == null || node2 == null ||                  node1.data != node2.data) {                 return false;             }              // Enqueue children in opposite            	// order to compare them             q.Enqueue(node1.left);             q.Enqueue(node2.right);             q.Enqueue(node1.right);             q.Enqueue(node2.left);         }          // If the loop completes without          // returning false, the tree is symmetric         return true;     }      static void Main() {                // Creating a sample symmetric binary tree         //        1         //       / \         //      2   2         //     / \ / \         //    3  4 4  3         Node root = new Node(1);         root.left = new Node(2);         root.right = new Node(2);         root.left.left = new Node(3);         root.left.right = new Node(4);         root.right.left = new Node(4);         root.right.right = new Node(3);          Console.WriteLine(isSymmetric(root) ? "true" : "false");     } } 
JavaScript
// JavaScript program to check if a given // Binary Tree is symmetric class Node {     constructor(val) {         this.data = val;         this.left = this.right = null;     } }  // Function to check if the binary tree is symmetric function isSymmetric(root) {     if (root === null) {         return true;     }      // Use a queue to store nodes for comparison     const q = [];      // Initialize the queue with the left     // and right subtrees     q.push(root.left);     q.push(root.right);      while (q.length > 0) {              const node1 = q.shift();         const node2 = q.shift();          // If both nodes are null,          // continue to the next pair         if (node1 === null && node2 === null) {             continue;         }          // If one node is null and the other is not,          // or the nodes' data do not match         // then the tree is not symmetric         if (node1 === null || node2 === null ||              node1.data !== node2.data) {             return false;         }          // Enqueue children in opposite          // order to compare them         q.push(node1.left);         q.push(node2.right);         q.push(node1.right);         q.push(node2.left);     }      // If the loop completes without      // returning false, the tree is symmetric     return true; }  // Creating a sample symmetric binary tree //        1 //       / \ //      2   2 //     / \ / \ //    3  4 4  3 let root = new Node(1); root.left = new Node(2); root.right = new Node(2); root.left.left = new Node(3); root.left.right = new Node(4); root.right.left = new Node(4); root.right.right = new Node(3);  console.log(isSymmetric(root) ? "true" : "false"); 

Output
True



Next Article
Symmetric Tree (Mirror Image of itself)

K

kartik
Improve
Article Tags :
  • Tree
  • DSA
  • Amazon
Practice Tags :
  • Amazon
  • Tree

Similar Reads

    Binary Tree Data Structure
    A Binary Tree Data Structure is a hierarchical data structure in which each node has at most two children, referred to as the left child and the right child. It is commonly used in computer science for efficient storage and retrieval of data, with various operations such as insertion, deletion, and
    3 min read
    Introduction to Binary Tree
    Binary Tree is a non-linear and hierarchical data structure where each node has at most two children referred to as the left child and the right child. The topmost node in a binary tree is called the root, and the bottom-most nodes are called leaves. Introduction to Binary TreeRepresentation of Bina
    15+ min read
    Properties of Binary Tree
    This post explores the fundamental properties of a binary tree, covering its structure, characteristics, and key relationships between nodes, edges, height, and levelsBinary tree representationNote: Height of root node is considered as 0. Properties of Binary Trees1. Maximum Nodes at Level 'l'A bina
    4 min read
    Applications, Advantages and Disadvantages of Binary Tree
    A binary tree is a tree that has at most two children for any of its nodes. There are several types of binary trees. To learn more about them please refer to the article on "Types of binary tree" Applications:General ApplicationsDOM in HTML: Binary trees help manage the hierarchical structure of web
    2 min read
    Binary Tree (Array implementation)
    Given an array that represents a tree in such a way that array indexes are values in tree nodes and array values give the parent node of that particular index (or node). The value of the root node index would always be -1 as there is no parent for root. Construct the standard linked representation o
    6 min read
    Maximum Depth of Binary Tree
    Given a binary tree, the task is to find the maximum depth of the tree. The maximum depth or height of the tree is the number of edges in the tree from the root to the deepest node.Examples:Input: Output: 2Explanation: The longest path from the root (node 12) goes through node 8 to node 5, which has
    11 min read
    Insertion in a Binary Tree in level order
    Given a binary tree and a key, the task is to insert the key into the binary tree at the first position available in level order manner.Examples:Input: key = 12 Output: Explanation: Node with value 12 is inserted into the binary tree at the first position available in level order manner.Approach:The
    8 min read
    Deletion in a Binary Tree
    Given a binary tree, the task is to delete a given node from it by making sure that the tree shrinks from the bottom (i.e. the deleted node is replaced by the bottom-most and rightmost node). This is different from BST deletion. Here we do not have any order among elements, so we replace them with t
    12 min read
    Enumeration of Binary Trees
    A Binary Tree is labeled if every node is assigned a label and a Binary Tree is unlabelled if nodes are not assigned any label. Below two are considered same unlabelled trees o o / \ / \ o o o o Below two are considered different labelled trees A C / \ / \ B C A B How many different Unlabelled Binar
    3 min read

    Types of Binary Tree

    Types of Binary Tree
    We have discussed Introduction to Binary Tree in set 1 and the Properties of Binary Tree in Set 2. In this post, common types of Binary Trees are discussed. Types of Binary Tree based on the number of children:Following are the types of Binary Tree based on the number of children: Full Binary TreeDe
    7 min read
    Complete Binary Tree
    We know a tree is a non-linear data structure. It has no limitation on the number of children. A binary tree has a limitation as any node of the tree has at most two children: a left and a right child. What is a Complete Binary Tree?A complete binary tree is a special type of binary tree where all t
    7 min read
    Perfect Binary Tree
    What is a Perfect Binary Tree? A perfect binary tree is a special type of binary tree in which all the leaf nodes are at the same depth, and all non-leaf nodes have two children. In simple terms, this means that all leaf nodes are at the maximum depth of the tree, and the tree is completely filled w
    4 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences