Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
    • Practice Coding Problems
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • DSA
  • Practice on BST
  • MCQs on BST
  • BST Tutorial
  • BST Insertion
  • BST Traversals
  • BST Searching
  • BST Deletion
  • Check BST
  • Balance a BST
  • Self-Balancing BST
  • AVL Tree
  • Red-Black Tree
  • Splay Tree
  • BST Application
  • BST Advantage
Open In App
Next Article:
Sum of k smallest elements in BST
Next article icon

Sum of k smallest elements in BST

Last Updated : 30 Sep, 2024
Comments
Improve
Suggest changes
Like Article
Like
Report
Try it on GfG Practice
redirect icon

Given Binary Search Tree. The task is to find the sum of all elements smaller than and equal to kth smallest element.

Examples: 

Input:

Sum-of-k-smallest-elements-in-BST-1

Output: 17
Explanation: kth smallest element is 8 so sum of all element smaller than or equal to 8 are 2 + 7 + 8 = 17.

Input:

Sum-of-k-smallest-elements-in-BST-2

Output: 25
Explanation: kth smallest element is 8 so sum of all element smaller than or equal to 8 are 8 + 5 + 7 + 2 + 3 = 25.

Table of Content

  • [Naive Approach] Using Inorder Traversal - O(n) Time and O(n) Space
  • [Expected Approach] Using Morris Traversal - O(n) Time and O(1) Space

[Naive Approach] Using Inorder Traversal - O(n) Time and O(n) Space

The idea is to traverse BST in inorder traversal. Note that Inorder traversal of BST accesses elements in sorted (or increasing) order. While traversing, we keep track of count of visited Nodes and keep adding Nodes until the count becomes k. 

Below is the implementation of the above approach:

C++
// C++ program to find Sum Of All Elements smaller // than or equal to Kth Smallest Element In BST #include <bits/stdc++.h> using namespace std;  class Node { public:     int data;     Node *left, *right;      Node(int x) {         data = x;         left = right = nullptr;     } };  // Recursive function to calculate the sum of the  // first k smallest elements void calculateSum(Node* root, int& k, int& ans) {          if (root->left != nullptr) {         calculateSum(root->left, k, ans);     }      if (k > 0) {         ans += root->data;         k--;     }      else {         return;     }      if (root->right != nullptr) {         calculateSum(root->right, k, ans);     } }  // Function to find the sum of the first  // k smallest elements int sum(Node* root, int k) {          int ans = 0;     calculateSum(root, k, ans);     return ans; }  int main() {      // Input BST     //         8     //       /   \     //      7     10     //    /      /  \     //   2      9    13     Node* root = new Node(8);     root->left = new Node(7);     root->right = new Node(10);     root->left->left = new Node(2);     root->right->left = new Node(9);     root->right->right = new Node(13);      int k = 3;     cout << sum(root, k) << "\n";      return 0; } 
C
// C program to find Sum Of All Elements smaller // than or equal to Kth Smallest Element In BST #include <stdio.h> #include <stdlib.h>  struct Node {     int data;     struct Node* left;     struct Node* right; };  // Recursive function to calculate the sum of // the first k smallest elements void calculateSum(struct Node* root, int* k, int* ans) {          if (root->left != NULL) {         calculateSum(root->left, k, ans);     }      if (*k > 0) {         *ans += root->data;         (*k)--;     }      else {         return;     }      if (root->right != NULL) {         calculateSum(root->right, k, ans);     } }  // Function to find the sum of the first  // k smallest elements int sum(struct Node* root, int k) {     int ans = 0;     calculateSum(root, &k, &ans);     return ans; }  struct Node* newNode(int data) {     struct Node* node        = (struct Node*)malloc(sizeof(struct Node));     node->data = data;     node->left = node->right = NULL;     return node; }  int main() {      // Input BST     //         8     //       /   \     //      7     10     //    /      /  \     //   2      9    13     struct Node* root = newNode(8);     root->left = newNode(7);     root->right = newNode(10);     root->left->left = newNode(2);     root->right->left = newNode(9);     root->right->right = newNode(13);      int k = 3;     printf("%d\n", sum(root, k));        return 0; } 
Java
// Java program to find Sum Of All Elements smaller // than or equal to Kth Smallest Element In BST class Node {     int data;     Node left, right;      Node(int x) {         data = x;         left = right = null;     } }  class GfG {      // Recursive function to calculate the sum of the      // first k smallest elements     static void calculateSum(Node root, int[] k,                                            int[] ans) {                  if (root.left != null) {             calculateSum(root.left, k, ans);         }          if (k[0] > 0) {             ans[0] += root.data;             k[0]--;         }          else {             return;         }          if (root.right != null) {             calculateSum(root.right, k, ans);         }     }      // Function to find the sum of the first     // k smallest elements     static int sum(Node root, int k) {         int[] ans = {0};         int[] kArr = {k};         calculateSum(root, kArr, ans);         return ans[0];     }      public static void main(String[] args) {          // Input BST         //         8         //       /   \         //      7     10         //    /      /  \         //   2      9    13         Node root = new Node(8);         root.left = new Node(7);         root.right = new Node(10);         root.left.left = new Node(2);         root.right.left = new Node(9);         root.right.right = new Node(13);          int k = 3;         System.out.println(sum(root, k));       } } 
Python
# Python3 program to find Sum Of All  # Elements smaller than or equal to  # Kth Smallest Element In BST  class Node:     def __init__(self, data):         self.data = data         self.left = None         self.right = None  # Recursive function to calculate the sum of  # the first k smallest elements def calculateSum(root, k, ans):     if root.left is not None:         calculateSum(root.left, k, ans)          if k[0] > 0:         ans[0] += root.data         k[0] -= 1     else:         return      if root.right is not None:         calculateSum(root.right, k, ans)  # Function to find the sum of the first k  # smallest elements def sum_k_smallest(root, k):     ans = [0]     calculateSum(root, [k], ans)     return ans[0]  if __name__ == "__main__":        # Input BST     #         8     #       /   \     #      7     10     #    /      /  \     #   2      9    13     root = Node(8)     root.left = Node(7)     root.right = Node(10)     root.left.left = Node(2)     root.right.left = Node(9)     root.right.right = Node(13)      k = 3     print(sum_k_smallest(root, k))  
C#
// C# program to find Sum Of All Elements smaller // than or equal to Kth Smallest Element In BST using System;  class Node {     public int data;     public Node left, right;      public Node(int data) {         this.data = data;         left = right = null;     } }  class GfG {      // Recursive function to calculate the sum of      // the first k smallest elements     static void CalculateSum(Node root,                                   ref int k, ref int ans) {                  if (root.left != null) {             CalculateSum(root.left, ref k, ref ans);         }          if (k > 0) {             ans += root.data;             k--;         } else {             return;         }          if (root.right != null) {             CalculateSum(root.right, ref k, ref ans);         }     }      // Function to find the sum of the first k     // smallest elements    	static int Sum(Node root, int k) {         int ans = 0;         CalculateSum(root, ref k, ref ans);         return ans;     }      static void Main() {          // Input BST         //         8         //       /   \         //      7     10         //    /      /  \         //   2      9    13         Node root = new Node(8);         root.left = new Node(7);         root.right = new Node(10);         root.left.left = new Node(2);         root.right.left = new Node(9);         root.right.right = new Node(13);          int k = 3;         Console.WriteLine(Sum(root, k));      } } 
JavaScript
// Javascript program to find Sum Of All Elements smaller // than or equal to Kth Smallest Element In BST class Node {     constructor(data) {         this.data = data;         this.left = null;         this.right = null;     } }  // Recursive function to calculate the sum of the  // first k smallest elements function calculateSum(root, k, ans) {     if (root.left !== null) {         calculateSum(root.left, k, ans);     }      if (k.val > 0) {         ans.val += root.data;         k.val--;     }      else {         return;     }      if (root.right !== null) {         calculateSum(root.right, k, ans);     } }  // Function to find the sum of the first k  // smallest elements function sumKSmallest(root, k) {     let ans = { val: 0 };     let kObj = { val: k };     calculateSum(root, kObj, ans);     return ans.val; }  // Input BST //         8 //       /   \ //      7     10 //    /      /  \ //   2      9    13 let root = new Node(8); root.left = new Node(7); root.right = new Node(10); root.left.left = new Node(2); root.right.left = new Node(9); root.right.right = new Node(13);  let k = 3; console.log(sumKSmallest(root, k)); 

Output
17 

Time complexity: O(n), where n is the number of nodes in the Binary Search Tree, as the algorithm performs an inorder traversal visiting each node once.
Auxiliary Space: O(h), where h is the height of the tree, due to the recursive call stack. In the worst case (skewed tree), it can be O(n).

[Expected Approach] Using Morris Traversal - O(n) Time and O(1) Space

The idea is to use Morris Traversal , this method establishes temporary threads (links) to allow traversal and reverts these changes afterward to restore the original tree structure. By counting nodes during traversal, we can compute the cumulative sum of the k nodes visited.

Follow the steps below to solve the problem:

  • Initialize current as root, and counter, result to store the count and sum of elements found.
  • If current has no left child:
    • Increment counter and add current's data to answer.
    • If counter == k, return answer.
    • Move to the right by updating current as current'right.
  • Otherwise:
    • Find the rightmost node in current's left subtree (inorder predecessor) or a node whose right child is current.
  • If the right child of the found node is current, restore the original tree:
    • Set the right child of the node to NULL, increment counter, add current's data to answer, and
    • if counter == k, return answer.
    • Move to the right by updating current as current'right.
  • Otherwise, set current as the right child of the rightmost node.

Below is implementation of above approach : 

C++
// C++ program to find Sum Of All Elements smaller // than or equal to Kth Smallest Element In BST // Using Morris Traversal  #include <bits/stdc++.h> using namespace std;  class Node { public:     int data;     Node *left, *right;      Node(int x) {         data = x;         left = right = nullptr;     } };  // Function to find the sum of all elements  // smaller than or equal to k-th smallest element int sum(Node *root, int k) {         Node* current = root;     int count = 0, result = 0;      while (current != nullptr) {         if (current->left == nullptr) {                        // Visit this node             count++;             result += current->data;             if (count == k) {                 return result;             }             // Move to the right subtree             current = current->right;         }         else {                        // Find the predecessor             // (rightmost node in left subtree)             Node* pre = current->left;             while (pre->right != nullptr                           && pre->right != current) {                 pre = pre->right;             }              if (pre->right == nullptr) {                                // Establish thread/link from                  // predecessor to current                 pre->right = current;                                // Move to the left subtree                 current = current->left;             }             else {                                // Revert the thread/link from                 // predecessor to current                 pre->right = nullptr;                                // Visit this node                 count++;                 result += current->data;                 if (count == k) {                     return result;                 }                                // Move to the right subtree                 current = current->right;             }         }     }     return result;  }  int main() {        // Input BST     //         8     //       /   \     //      7     10     //    /      /  \     //   2      9    13     Node* root = new Node(8);     root->left = new Node(7);     root->right = new Node(10);     root->left->left = new Node(2);     root->right->left = new Node(9);     root->right->right = new Node(13);      int k = 3;     cout << sum(root, k) << "\n";       return 0; } 
C
// C program to find Sum Of All Elements smaller // than or equal to Kth Smallest Element In BST // Using Morris Traversal #include <stdio.h> #include <stdlib.h>  struct Node {     int data;     struct Node *left, *right; };  // Function to find the sum of all elements // smaller than or equal to k-th smallest element int sum(struct Node *root, int k) {     struct Node *current = root;     int count = 0, result = 0;      while (current != NULL) {         if (current->left == NULL) {                        // Visit this node             count++;             result += current->data;             if (count == k) {                 return result;             }             // Move to the right subtree             current = current->right;         }         else {                        // Find the predecessor              // (rightmost node in left subtree)             struct Node *pre = current->left;             while (pre->right != NULL                     && pre->right != current) {                 pre = pre->right;             }              if (pre->right == NULL) {                                // Establish thread/link from                  // predecessor to current                 pre->right = current;                                // Move to the left subtree                 current = current->left;             }              else {                               // Revert the thread/link from                  // predecessor to current                 pre->right = NULL;                                // Visit this node                 count++;                 result += current->data;                 if (count == k) {                     return result;                 }                                // Move to the right subtree                 current = current->right;             }         }     }     return result; }  struct Node* createNode(int data) {     struct Node* newNode        = (struct Node*)malloc(sizeof(struct Node));     newNode->data = data;     newNode->left = newNode->right = NULL;     return newNode; }  int main() {        // Input BST     //         8     //       /   \     //      7     10     //    /      /  \     //   2      9    13     struct Node* root = createNode(8);     root->left = createNode(7);     root->right = createNode(10);     root->left->left = createNode(2);     root->right->left = createNode(9);     root->right->right = createNode(13);      int k = 3;     printf("%d\n", sum(root, k));      return 0; } 
Java
// Java program to find Sum Of All Elements smaller // than or equal to Kth Smallest Element In BST // Using Morris Traversal  class Node {     int data;     Node left, right;      Node(int x) {         data = x;         left = right = null;     } }  class GfG {        // Function to find the sum of all elements      // smaller than or equal to k-th smallest element     static int sum(Node root, int k) {         Node current = root;         int count = 0, result = 0;          while (current != null) {             if (current.left == null) {                                // Visit this node                 count++;                 result += current.data;                 if (count == k) {                     return result;                 }                 // Move to the right subtree                 current = current.right;             }              else {                                // Find the predecessor                  // (rightmost node in left subtree)                 Node pre = current.left;                 while (pre.right != null                         && pre.right != current) {                     pre = pre.right;                 }                  if (pre.right == null) {                                        // Establish thread/link from                      // predecessor to current                     pre.right = current;                                        // Move to the left subtree                     current = current.left;                 }                  else {                                        // Revert the thread/link from                     // predecessor to current                     pre.right = null;                                        // Visit this node                     count++;                     result += current.data;                     if (count == k) {                         return result;                     }                                        // Move to the right subtree                     current = current.right;                 }             }         }         return result;     }      public static void main(String[] args) {                // Input BST         //         8         //       /   \         //      7     10         //    /      /  \         //   2      9    13         Node root = new Node(8);         root.left = new Node(7);         root.right = new Node(10);         root.left.left = new Node(2);         root.right.left = new Node(9);         root.right.right = new Node(13);          int k = 3;         System.out.println(sum(root, k));     } } 
Python
# Python program to find Sum Of All Elements smaller # than or equal to Kth Smallest Element In BST # Using Morris Traversal class Node:     def __init__(self, data):         self.data = data         self.left = None         self.right = None  # Function to find the sum of all elements  # smaller than or equal to k-th smallest element def sum_kth_smallest(root, k):     current = root     count = 0     result = 0      while current:         if current.left is None:                        # Visit this node             count += 1             result += current.data             if count == k:                 return result                            # Move to the right subtree             current = current.right         else:                        # Find the predecessor              # (rightmost node in left subtree)             pre = current.left             while pre.right is not None and pre.right != current:                 pre = pre.right              if pre.right is None:                                # Establish thread/link from                  # predecessor to current                 pre.right = current                                  # Move to the left subtree                 current = current.left             else:                                # Revert the thread/link from                  # predecessor to current                 pre.right = None                                  # Visit this node                 count += 1                 result += current.data                 if count == k:                     return result                                    # Move to the right subtree                 current = current.right          return result  if __name__ == "__main__":        # Input BST     #         8     #       /   \     #      7     10     #    /      /  \     #   2      9    13     root = Node(8)     root.left = Node(7)     root.right = Node(10)     root.left.left = Node(2)     root.right.left = Node(9)     root.right.right = Node(13)      k = 3     print(sum_kth_smallest(root, k)) 
C#
// C# program to find Sum Of All Elements smaller // than or equal to Kth Smallest Element In BST // Using Morris Traversal using System;  class Node {     public int data;     public Node left, right;      public Node(int x) {         data = x;         left = right = null;     } }  class GfG {        // Function to find the sum of all elements      // smaller than or equal to k-th smallest element     static int Sum(Node root, int k) {         Node current = root;         int count = 0, result = 0;          while (current != null) {             if (current.left == null) {                                // Visit this node                 count++;                 result += current.data;                 if (count == k) {                     return result;                 }                                // Move to the right subtree                 current = current.right;             }              else {                 // Find the predecessor                  // (rightmost node in left subtree)                 Node pre = current.left;                 while (pre.right != null                          && pre.right != current) {                     pre = pre.right;                 }                  if (pre.right == null) {                                        // Establish thread/link from                      // predecessor to current                     pre.right = current;                                        // Move to the left subtree                     current = current.left;                 }                  else {                                        // Revert the thread/link from                      // predecessor to current                     pre.right = null;                                        // Visit this node                     count++;                     result += current.data;                     if (count == k) {                         return result;                     }                                        // Move to the right subtree                     current = current.right;                 }             }         }         return result;     }      static void Main(string[] args) {                // Input BST         //         8         //       /   \         //      7     10         //    /      /  \         //   2      9    13         Node root = new Node(8);         root.left = new Node(7);         root.right = new Node(10);         root.left.left = new Node(2);         root.right.left = new Node(9);         root.right.right = new Node(13);          int k = 3;         Console.WriteLine(Sum(root, k));     } } 
JavaScript
// JavaScript program to find Sum Of All Elements  // smaller than or equal to Kth Smallest  // Element In BST Using Morris Traversal class Node {   constructor(data) {     this.data = data;     this.left = null;     this.right = null;   } }  // Function to find the sum of all elements  // smaller than or equal to k-th smallest element function sum(root, k) {   let current = root;   let count = 0;   let result = 0;    while (current !== null) {     if (current.left === null) {            // Visit this node       count++;       result += current.data;       if (count === k) {         return result;       }              // Move to the right subtree       current = current.right;     }      else {            // Find the predecessor (rightmost node in left subtree)       let pre = current.left;       while (pre.right !== null && pre.right !== current) {         pre = pre.right;       }        if (pre.right === null) {                // Establish thread/link from predecessor to current         pre.right = current;                  // Move to the left subtree         current = current.left;       }       else {                // Revert the thread/link from predecessor to current         pre.right = null;                  // Visit this node         count++;         result += current.data;         if (count === k) {           return result;         }                  // Move to the right subtree         current = current.right;       }     }   }    return result; }  // Input BST //         8 //       /   \ //      7     10 //    /      /  \ //   2      9    13 let root = new Node(8); root.left = new Node(7); root.right = new Node(10); root.left.left = new Node(2); root.right.left = new Node(9); root.right.right = new Node(13);  let k = 3; console.log(sum(root, k));  

Output
17 

Time Complexity: O(k), since we only traverse the tree until the k-th smallest element.
Auxiliary Space: O(1), for the iterative approach, as it uses a constant amount of space, with no additional data structures aside from a few variables.


Next Article
Sum of k smallest elements in BST

K

kartik
Improve
Article Tags :
  • Binary Search Tree
  • DSA
  • Order-Statistics
  • Amazon
Practice Tags :
  • Amazon
  • Binary Search Tree

Similar Reads

    Binary Search Tree
    A Binary Search Tree (BST) is a type of binary tree data structure in which each node contains a unique key and satisfies a specific ordering property:All nodes in the left subtree of a node contain values strictly less than the node’s value. All nodes in the right subtree of a node contain values s
    4 min read
    Introduction to Binary Search Tree
    Binary Search Tree is a data structure used in computer science for organizing and storing data in a sorted manner. Binary search tree follows all properties of binary tree and for every nodes, its left subtree contains values less than the node and the right subtree contains values greater than the
    3 min read
    Applications of BST
    Binary Search Tree (BST) is a data structure that is commonly used to implement efficient searching, insertion, and deletion operations along with maintaining sorted sequence of data. Please remember the following properties of BSTs before moving forward.The left subtree of a node contains only node
    3 min read
    Applications, Advantages and Disadvantages of Binary Search Tree
    A Binary Search Tree (BST) is a data structure used to storing data in a sorted manner. Each node in a Binary Search Tree has at most two children, a left child and a right child, with the left child containing values less than the parent node and the right child containing values greater than the p
    2 min read
    Insertion in Binary Search Tree (BST)
    Given a BST, the task is to insert a new node in this BST.Example: How to Insert a value in a Binary Search Tree:A new key is always inserted at the leaf by maintaining the property of the binary search tree. We start searching for a key from the root until we hit a leaf node. Once a leaf node is fo
    15 min read
    Searching in Binary Search Tree (BST)
    Given a BST, the task is to search a node in this BST. For searching a value in BST, consider it as a sorted array. Now we can easily perform search operation in BST using Binary Search Algorithm. Input: Root of the below BST Output: TrueExplanation: 8 is present in the BST as right child of rootInp
    7 min read
    Deletion in Binary Search Tree (BST)
    Given a BST, the task is to delete a node in this BST, which can be broken down into 3 scenarios:Case 1. Delete a Leaf Node in BST Case 2. Delete a Node with Single Child in BSTDeleting a single child node is also simple in BST. Copy the child to the node and delete the node. Case 3. Delete a Node w
    10 min read
    Binary Search Tree (BST) Traversals – Inorder, Preorder, Post Order
    Given a Binary Search Tree, The task is to print the elements in inorder, preorder, and postorder traversal of the Binary Search Tree. Input: A Binary Search TreeOutput: Inorder Traversal: 10 20 30 100 150 200 300Preorder Traversal: 100 20 10 30 200 150 300Postorder Traversal: 10 30 20 150 300 200 1
    10 min read
    Balance a Binary Search Tree
    Given a BST (Binary Search Tree) that may be unbalanced, the task is to convert it into a balanced BST that has the minimum possible height.Examples: Input: Output: Explanation: The above unbalanced BST is converted to balanced with the minimum possible height.Input: Output: Explanation: The above u
    10 min read
    Self-Balancing Binary Search Trees
    Self-Balancing Binary Search Trees are height-balanced binary search trees that automatically keep the height as small as possible when insertion and deletion operations are performed on the tree. The height is typically maintained in order of logN so that all operations take O(logN) time on average
    4 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences