Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • DSA
  • Practice Pattern Searching
  • Tutorial on Pattern Searching
  • Naive Pattern Searching
  • Rabin Karp
  • KMP Algorithm
  • Z Algorithm
  • Trie for Pattern Seaching
  • Manacher Algorithm
  • Suffix Tree
  • Ukkonen's Suffix Tree Construction
  • Boyer Moore
  • Aho-Corasick Algorithm
  • Wildcard Pattern Matching
Open In App
Next Article:
Introduction to Set – Data Structure and Algorithm Tutorials
Next article icon

Suffix Array | Set 1 (Introduction)

Last Updated : 23 Apr, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report

We strongly recommend to read following post on suffix trees as a pre-requisite for this post.
Pattern Searching | Set 8 (Suffix Tree Introduction)
A suffix array is a sorted array of all suffixes of a given string. The definition is similar to Suffix Tree which is compressed trie of all suffixes of the given text. Any suffix tree based algorithm can be replaced with an algorithm that uses a suffix array enhanced with additional information and solves the same problem in the same time complexity (Source Wiki). 
A suffix array can be constructed from Suffix tree by doing a DFS traversal of the suffix tree. In fact Suffix array and suffix tree both can be constructed from each other in linear time. 
Advantages of suffix arrays over suffix trees include improved space requirements, simpler linear time construction algorithms (e.g., compared to Ukkonen’s algorithm) and improved cache locality (Source: Wiki)
Example: 
 

Let the given string be "banana".

0 banana 5 a
1 anana Sort the Suffixes 3 ana
2 nana ----------------> 1 anana
3 ana alphabetically 0 banana
4 na 4 na
5 a 2 nana

So the suffix array for "banana" is {5, 3, 1, 0, 4, 2}


Naive method to build Suffix Array 
A simple method to construct suffix array is to make an array of all suffixes and then sort the array. Following is implementation of simple method.
 

CPP
// Naive algorithm for building suffix array of a given text #include <iostream> #include <cstring> #include <algorithm> using namespace std;  // Structure to store information of a suffix struct suffix {     int index;     char *suff; };  // A comparison function used by sort() to compare two suffixes int cmp(struct suffix a, struct suffix b) {     return strcmp(a.suff, b.suff) < 0? 1 : 0; }  // This is the main function that takes a string 'txt' of size n as an // argument, builds and return the suffix array for the given string int *buildSuffixArray(char *txt, int n) {     // A structure to store suffixes and their indexes     struct suffix suffixes[n];      // Store suffixes and their indexes in an array of structures.     // The structure is needed to sort the suffixes alphabetically     // and maintain their old indexes while sorting     for (int i = 0; i < n; i++)     {         suffixes[i].index = i;         suffixes[i].suff = (txt+i);     }      // Sort the suffixes using the comparison function     // defined above.     sort(suffixes, suffixes+n, cmp);      // Store indexes of all sorted suffixes in the suffix array     int *suffixArr = new int[n];     for (int i = 0; i < n; i++)         suffixArr[i] = suffixes[i].index;      // Return the suffix array     return  suffixArr; }  // A utility function to print an array of given size void printArr(int arr[], int n) {     for(int i = 0; i < n; i++)         cout << arr[i] << " ";     cout << endl; }  // Driver program to test above functions int main() {     char txt[] = "banana";     int n = strlen(txt);     int *suffixArr = buildSuffixArray(txt,  n);     cout << "Following is suffix array for " << txt << endl;     printArr(suffixArr, n);     return 0; } 
Java
//importing the required packages import java.util.ArrayList; import java.util.Arrays;  class suffix_array {     public static void main(String[] args) throws Exception     {         String word = "banana";         String arr1[] = new String[word.length()];         String arr2[] = new String[word.length()];         ArrayList<Integer> suffix_index             = new ArrayList<Integer>();         int suffix_array[] = new int[word.length()];         for (int i = 0; i < word.length(); i++) {             arr1[i] = word.substring(i);         }         arr2 = arr1.clone();         Arrays.sort(arr1);         for (String i : arr1) {             String piece = i;             int index                 = new suffix_array().index(arr2, piece);             suffix_index.add(index);         }         for (int i = 0; i < suffix_array.length; i++) {             suffix_array[i] = suffix_index.get(i);         }         System.out.println(             "following is the suffix array for banana");         for (int i : suffix_array) {             System.out.print(i + " ");         }     }            //simple function to return the index of item from array arr[]     int index(String arr[], String item)     {         for (int i = 0; i < arr.length; i++) {             if (item == arr[i])                 return i;         }         return -1;     } } 
Python
# Naive algorithm for building suffix array of a given text import sys   class Suffix:     def __init__(self, index, suff):         self.index = index         self.suff = suff  # A comparison function used by sort() to compare two suffixes def cmp(a, b):     return (a.suff < b.suff) - (a.suff > b.suff)  # This is the main function that takes a string 'txt' of size n as an # argument, builds and return the suffix array for the given string def build_suffix_array(txt, n):     # A structure to store suffixes and their indexes     suffixes = [Suffix(i, txt[i:]) for i in range(n)]      # Sort the suffixes using the comparison function     # defined above.     suffixes.sort(key=cmp)      # Store indexes of all sorted suffixes in the suffix array     suffix_arr = [suffixes[i].index for i in range(n)]      # Return the suffix array     return suffix_arr  # A utility function to print an array of given size def print_arr(arr):     for i in range(len(arr)):         print(arr[i], end=" ")     print()  # Driver program to test above functions def main():     txt = "banana"     n = len(txt)     suffix_arr = build_suffix_array(txt, n)     print("Following is suffix array for", txt)     print_arr(suffix_arr)  if __name__ == "__main__":     main() 
C#
// Naive algorithm for building suffix array of a given text using System; using System.Linq;  class SuffixArray {     private readonly string _text;     private readonly int[] _suffixArray;      private struct Suffix     {         public int Index { get; set; }         public string Suff { get; set; }     }      private static int CompareSuffixes(Suffix a, Suffix b)     {         return string.Compare(a.Suff, b.Suff, StringComparison.Ordinal);     }      public SuffixArray(string text)     {         _text = text;          var n = _text.Length;         var suffixes = new Suffix[n];          for (var i = 0; i < n; i++)         {             suffixes[i] = new Suffix             {                 Index = i,                 Suff = _text.Substring(i)             };         }          Array.Sort(suffixes, CompareSuffixes);          _suffixArray = new int[n];         for (var i = 0; i < n; i++)         {             _suffixArray[i] = suffixes[i].Index;         }     }      public int[] GetSuffixArray()     {         return _suffixArray;     } }  class Program {     static void Main(string[] args)     {         var txt = "banana";         var suffixArray = new SuffixArray(txt);         Console.WriteLine("Following is suffix array for " + txt);         Console.WriteLine(string.Join(" ", suffixArray.GetSuffixArray().Select(x => x.ToString())));     } }  // This code is contributed by snehalsalokhe  
JavaScript
// Naive algorithm for building suffix array of a given text       // A comparison function used by sort() to compare two suffixes       function comp(a, b) {         const name1 = a.suff;         const name2 = b.suff;          let comparison = 0;          if (name1 > name2) {           comparison = 1;         } else if (name1 < name2) {           comparison = -1;         }         return comparison;       }        // This is the main function that takes a string 'txt' of size n as an       // argument, builds and return the suffix array for the given string       function buildSuffixArray(txt, n) {         // A Array to store suffixes and their indexes         var suffixes = [];         // Store suffixes and their indexes in an array of objects.         // The object is needed to sort the suffixes alphabetically         // and maintain their old indexes while sorting          for (var i = 0; i < n; i++) {           var suffix = {};           suffix.index = i;           suffix.suff = txt.substr(i);           suffixes.push(suffix);         }          // Sort the suffixes using the comparison function defined above.          suffixes.sort(comp);          // Store indexes of all sorted suffixes in the suffix array         var suffixArr = [];          for (var i = 0; i < n; i++) suffixArr[i] = suffixes[i].index;          // Return the suffix array         return suffixArr;       }        // A utility function to print an array of given size       function printArr(arr, n) {         for (var i = 0; i < n; i++) {           console.log(arr[i]);         }       }        // Driver program to test above functions        var txt = "banana";       var n = txt.length;       var suffixArr = buildSuffixArray(txt, n);       console.log("Following is suffix array for " + txt);       printArr(suffixArr, n); 

Output
Following is suffix array for banana 5 3 1 0 4 2 


Time Complexity: O(n*k*Logn). if we consider a O(nLogn)) algorithm used for sorting. The sorting step itself takes O(n*k*Logn) time as every comparison is a comparison of two strings and the comparison takes O(K) time where K is max length of string in given array. 
Auxiliary Space: O(n)

There are many efficient algorithms to build suffix array. We will soon be covering them as separate posts.
Search a pattern using the built Suffix Array 
To search a pattern in a text, we preprocess the text and build a suffix array of the text. Since we have a sorted array of all suffixes, Binary Search can be used to search. Following is the search function. Note that the function doesn’t report all occurrences of pattern, it only report one of them.
 

CPP
// This code only contains search() and main. To make it a complete running // above code or see  // A suffix array based search function to search a given pattern // 'pat' in given text 'txt' using suffix array suffArr[] void search(char *pat, char *txt, int *suffArr, int n) {     int m = strlen(pat);  // get length of pattern, needed for strncmp()      // Do simple binary search for the pat in txt using the     // built suffix array     int l = 0, r = n-1;  // Initialize left and right indexes     while (l <= r)     {         // See if 'pat' is prefix of middle suffix in suffix array         int mid = l + (r - l)/2;         int res = strncmp(pat, txt+suffArr[mid], m);          // If match found at the middle, print it and return         if (res == 0)         {             cout << "Pattern found at index " << suffArr[mid];             return;         }          // Move to left half if pattern is alphabetically less than         // the mid suffix         if (res < 0) r = mid - 1;          // Otherwise move to right half         else l = mid + 1;     }      // We reach here if return statement in loop is not executed     cout << "Pattern not found"; }  // Driver program to test above function int main() {     char txt[] = "banana";  // text     char pat[] = "nan";   // pattern to be searched in text      // Build suffix array     int n = strlen(txt);     int *suffArr = buildSuffixArray(txt, n);      // search pat in txt using the built suffix array     search(pat, txt, suffArr, n);      return 0; } 
Java
import java.io.*;  public class GFG {   // A suffix array based search function to search a given pattern // 'pat' in given text 'txt' using suffix array suffArr[] static void search(String pat, String txt, int[] suffArr, int n) {      // Get the length of the pattern     int m = pat.length();      // Initialize left and right indexes     int l = 0;     int r = n - 1;      // Do simple binary search for the pat in txt using the built suffix array     while (l <= r) {          // Find the middle index of the current subarray         int mid = l + (r - l) / 2;          // Get the substring of txt starting from suffArr[mid] and of length m         String res = txt.substring(suffArr[mid], suffArr[mid] + m);          // If the substring is equal to the pattern         if (res.equals(pat)) {              // Print the index and return             System.out.println("Pattern found at index " + suffArr[mid]);             return;         }          // If the substring is less than the pattern         if (res.compareTo(pat) < 0) {              // Move to the right half of the subarray             l = mid + 1;         } else {              // Move to the left half of the subarray             r = mid - 1;         }     }      // If the pattern is not found     System.out.println("Pattern not found"); }  static int[] buildSuffixArray(String txt, int n) {      // Create a list of all suffixes     String[] suffixes = new String[n];     for (int i = 0; i < n; i++) {         suffixes[i] = txt.substring(i, n);     }      // Sort the suffixes     java.util.Arrays.sort(suffixes);      // Create the suffix array     int[] suffArr = new int[n];     for (int i = 0; i < n; i++) {         suffArr[i] = txt.indexOf(suffixes[i]);     }     return suffArr; }  // Driver program to test above function public static void main(String[] args) {     String txt = "banana"; // text     String pat = "nan"; // pattern to be searched in text      // Build suffix array     int n = txt.length();     int[] suffArr = buildSuffixArray(txt, n);      // search pat in txt using the built suffix array     search(pat, txt, suffArr, n); } }  //This code is contributed by shivamsharma215 
Python
import sys  # A suffix array based search function to search a given pattern # 'pat' in given text 'txt' using suffix array suffArr[] def search(pat, txt, suffArr, n):        # Get the length of the pattern     m = len(pat)          # Initialize left and right indexes     l = 0     r = n-1          # Do simple binary search for the pat in txt using the built suffix array     while l <= r:                # Find the middle index of the current subarray         mid = l + (r - l)//2                  # Get the substring of txt starting from suffArr[mid] and of length m         res = txt[suffArr[mid]:suffArr[mid]+m]                  # If the substring is equal to the pattern         if res == pat:                        # Print the index and return             print("Pattern found at index", suffArr[mid])             return                    # If the substring is less than the pattern         if res < pat:                        # Move to the right half of the subarray             l = mid + 1         else:                        # Move to the left half of the subarray             r = mid - 1                  # If the pattern is not found     print("Pattern not found")      def buildSuffixArray(txt, n):        # Create a list of all suffixes     suffixes = [txt[i:] for i in range(n)]          # Sort the suffixes     suffixes.sort()          # Create the suffix array     suffArr = [txt.index(suffix) for suffix in suffixes]     return suffArr  # Driver program to test above function def main():     txt = "banana"  # text     pat = "nan"   # pattern to be searched in text      # Build suffix array     n = len(txt)     suffArr = buildSuffixArray(txt, n)      # search pat in txt using the built suffix array     search(pat, txt, suffArr, n)     return 0  if __name__ == '__main__':     sys.exit(main())  # This code is contributed by Vikram_Shirsat 
C#
using System;  class GFG {     // A suffix array based search function to search a     // given pattern 'pat' in given text 'txt' using suffix     // array suffArr[]     static void Search(string pat, string txt,                        int[] suffArr, int n)     {         // Get the length of the pattern         int m = pat.Length;          // Initialize left and right indexes         int l = 0;         int r = n - 1;          // Do simple binary search for the pat in txt using         // the built suffix array         while (l <= r) {             // Find the middle index of the current subarray             int mid = l + (r - l) / 2;              // Get the substring of txt starting from             // suffArr[mid] and of length m             string res = txt.Substring(suffArr[mid], m);              // If the substring is equal to the pattern             if (res.Equals(pat)) {                 // Print the index and return                 Console.WriteLine("Pattern found at index "                                   + suffArr[mid]);                 return;             }              // If the substring is less than the pattern             if (res.CompareTo(pat) < 0) {                 // Move to the right half of the subarray                 l = mid + 1;             }             else {                 // Move to the left half of the subarray                 r = mid - 1;             }         }          // If the pattern is not found         Console.WriteLine("Pattern not found");     }      static int[] BuildSuffixArray(string txt, int n)     {         // Create a list of all suffixes         string[] suffixes = new string[n];         for (int i = 0; i < n; i++) {             suffixes[i] = txt.Substring(i, n - i);         }          // Sort the suffixes         Array.Sort(suffixes);          // Create the suffix array         int[] suffArr = new int[n];         for (int i = 0; i < n; i++) {             suffArr[i] = txt.IndexOf(suffixes[i]);         }         return suffArr;     }      // Driver program to test above function     static void Main(string[] args)     {         string txt = "banana"; // text         string pat             = "nan"; // pattern to be searched in text          // Build suffix array         int n = txt.Length;         int[] suffArr = BuildSuffixArray(txt, n);          // search pat in txt using the built suffix array         Search(pat, txt, suffArr, n);     } } // This code is contributed by prajwal kandekar 
JavaScript
// A suffix array based search function to search a given pattern       // 'pat' in given text 'txt' using suffix array suffArr[]       function search(pat, txt, suffArr, n) {         var m = pat.length; // get length of pattern          // Do simple binary search for the pat in txt using the         // built suffix array         var l = 0;         var r = n - 1; // Initialize left and right indexes         while (l <= r) {           // See if 'pat' is prefix of middle suffix in suffix array           var mid = l + Math.floor((r - l) / 2);           var c = txt.substring(suffArr[mid]);           var res = 0;            for (var i = 0; i < m; i++) {             if (pat[i] == c[i]) {               continue;             } else if (pat[i] < c[i]) {               res = -1;               break;             } else {               res = 1;               break;             }           }            // If match found at the middle, print it and return           if (res == 0) {             console.log("Pattern found at index " + suffArr[mid]);             return;           }            // Move to left half if pattern is alphabetically less than           // the mid suffix           if (res < 0) r = mid - 1;           // Otherwise move to right half           else l = mid + 1;         }          // We reach here if return statement in loop is not executed         console.log("Pattern not found");       }              function comp(a, b) {         const name1 = a.suff;         const name2 = b.suff;          let comparison = 0;          if (name1 > name2) {           comparison = 1;         } else if (name1 < name2) {           comparison = -1;         }         return comparison;       }        function buildSuffixArray(txt, n) {         // A Array to store suffixes and their indexes         var suffixes = [];         // Store suffixes and their indexes in an array of objects.         // The object is needed to sort the suffixes alphabetically         // and maintain their old indexes while sorting          for (var i = 0; i < n; i++) {           var suffix = {};           suffix.index = i;           suffix.suff = txt.substr(i);           suffixes.push(suffix);         }          // Sort the suffixes using the comparison function defined above.          suffixes.sort(comp);          // Store indexes of all sorted suffixes in the suffix array         var suffixArr = [];          for (var i = 0; i < n; i++) suffixArr[i] = suffixes[i].index;          // Return the suffix array         return suffixArr;       }              var txt = "banana"; // text       var pat = "nan"; // pattern to be searched in text        // Build suffix array       var n = txt.length;       var suffArr = buildSuffixArray(txt, n);        // search pat in txt using the built suffix array       search(pat, txt, suffArr, n); 

Output: 

Pattern found at index 2

Time Complexity: O(mlogn)
Auxiliary Space: O(m+n) 


 There are more efficient algorithms to search pattern once the suffix array is built. In fact there is a O(m) suffix array based algorithm to search a pattern. We will soon be discussing efficient algorithm for search.
Applications of Suffix Array 
Suffix array is an extremely useful data structure, it can be used for a wide range of problems. Following are some famous problems where Suffix array can be used. 
1) Pattern Searching 
2) Finding the longest repeated substring 
3) Finding the longest common substring 
4) Finding the longest palindrome in a string
 


See this for more problems where Suffix arrays can be used.
This post is a simple introduction. There is a lot to cover in Suffix arrays. We have discussed a O(nLogn) algorithm for Suffix Array construction here. We will soon be discussing more efficient suffix array algorithms.
References: 
http://www.stanford.edu/class/cs97si/suffix-array.pdf 
http://en.wikipedia.org/wiki/Suffix_array
 



Next Article
Introduction to Set – Data Structure and Algorithm Tutorials
author
kartik
Improve
Article Tags :
  • Advanced Data Structure
  • DSA
  • Pattern Searching
  • Suffix-Array
Practice Tags :
  • Advanced Data Structure
  • Pattern Searching

Similar Reads

  • Suffix Array | Set 2 (nLogn Algorithm)
    Given a string, the task is to construct a suffix array for the given string. A suffix array is a sorted array of all suffixes of a given string. The definition is similar to Suffix Tree which is compressed trie of all suffixes of the given text. Examples: Input: str = "banana"Output: {5, 3, 1, 0, 4
    15+ min read
  • Suffix Automation
    In computer science, a suffix automaton is an efficient data structure for representing the substring index of a given string which allows the storage, processing, and retrieval of compressed information about all its substrings. In this article, we will delve into the concept of suffix automation,
    13 min read
  • Ukkonen's Suffix Tree Construction - Part 1
    Suffix Tree is very useful in numerous string processing and computational biology problems. Many books and e-resources talk about it theoretically and in few places, code implementation is discussed. But still, I felt something is missing and it's not easy to implement code to construct suffix tree
    8 min read
  • Introduction to Set – Data Structure and Algorithm Tutorials
    Set Data Structure is a type of data structure which stores a collection of distinct elements. In this article, we will provide a complete guide for Set Data Structure, which will help you to tackle any problem based on Set. Table of Content What is Set Data Structure? Need for Set Data Structure Ty
    15+ min read
  • Ukkonen's Suffix Tree Construction - Part 6
    This article is continuation of following five articles: Ukkonen’s Suffix Tree Construction – Part 1 Ukkonen’s Suffix Tree Construction – Part 2 Ukkonen’s Suffix Tree Construction – Part 3 Ukkonen’s Suffix Tree Construction – Part 4 Ukkonen’s Suffix Tree Construction – Part 5Please go through Part 1
    15+ min read
  • Ukkonen's Suffix Tree Construction - Part 4
    This article is continuation of following three articles: Ukkonen’s Suffix Tree Construction – Part 1 Ukkonen’s Suffix Tree Construction – Part 2 Ukkonen’s Suffix Tree Construction – Part 3 Please go through Part 1, Part 2 and Part 3, before looking at current article, where we have seen few basics
    11 min read
  • Ukkonen's Suffix Tree Construction - Part 5
    This article is continuation of following four articles: Ukkonen’s Suffix Tree Construction – Part 1 Ukkonen’s Suffix Tree Construction – Part 2 Ukkonen’s Suffix Tree Construction – Part 3 Ukkonen’s Suffix Tree Construction – Part 4 Please go through Part 1, Part 2, Part 3 and Part 4, before looking
    13 min read
  • Ukkonen's Suffix Tree Construction - Part 3
    This article is continuation of following two articles: Ukkonen’s Suffix Tree Construction – Part 1 Ukkonen’s Suffix Tree Construction – Part 2 Please go through Part 1 and Part 2, before looking at current article, where we have seen few basics on suffix tree, high level ukkonen’s algorithm, suffix
    15 min read
  • Ukkonen's Suffix Tree Construction - Part 2
    In Ukkonen’s Suffix Tree Construction – Part 1, we have seen high level Ukkonen’s Algorithm. This 2nd part is continuation of Part 1. Please go through Part 1, before looking at current article. In Suffix Tree Construction of string S of length m, there are m phases and for a phase j (1 <= j <
    11 min read
  • Suffix Arrays for Competitive Programming
    A suffix array is a sorted array of all suffixes of a given string. More formally if you are given a string 'S' then the suffix array for this string contains the indices 0 to n, such that the suffixes starting from these indices are sorted lexicographically. Example: Input: banana 0 banana 5 a1 ana
    5 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences