Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • DSA
  • Interview Problems on Tree
  • Practice Tree
  • MCQs on Tree
  • Tutorial on Tree
  • Types of Trees
  • Basic operations
  • Tree Traversal
  • Binary Tree
  • Complete Binary Tree
  • Ternary Tree
  • Binary Search Tree
  • Red-Black Tree
  • AVL Tree
  • Full Binary Tree
  • B-Tree
  • Advantages & Disadvantages
Open In App
Next Article:
Succinct Encoding of Binary Tree
Next article icon

Subtree with given sum in a Binary Tree

Last Updated : 29 Sep, 2024
Comments
Improve
Suggest changes
Like Article
Like
Report

You are given a binary tree and a given sum. The task is to check if there exists a subtree whose sum of all nodes is equal to the given sum.

Examples:

Input : key = 11

ex-3


Output: True
Explanation: sum of all nodes of subtree {2, 4, 5} = 11.

Input : key = 6

ex-3

Output: False
Explanation: No subtree whose sum of all nodes = 6.

Table of Content

  • [Expected Approach – 1] Using Recursion – O(n) Time and O(h) Space
  • [Expected Approach – 2] Using HashMap- O(n) Time and O(n) Space

[Expected Approach – 1] Using Recursion – O(n) Time and O(h) Space

The idea is to traverse the binary tree recursively, calculating the sum of the subtree rooted at each node. At each node, we compute the sum of its left and right subtrees and add the node’s value itself. If the sum of any subtree matches the given key sum, we mark it as found. We use a helper function subtreeSum() to compute the sum of each subtree and a flag foundSum to track if the key sum is found.

Below is the implementation of the above approach: 

C++
// C++ program to find if there is a subtree with // given sum  #include <iostream> using namespace std;  class Node { public:     int data;     Node* left;     Node* right;      Node(int x) {         data = x;         left = nullptr;         right = nullptr;     } };  // Function to calculate the sum of the subtree rooted at the given node int subtreeSum(Node* root, int& foundSum, int target) {        // Base case: If the node is NULL, return 0     if (root == nullptr)         return 0;      // Calculate the sum of the current subtree     int currentSum = root->data +                      subtreeSum(root->left, foundSum, target) +                      subtreeSum(root->right, foundSum, target);      // If the current subtree sum matches the target,      // set foundSum to 1     if (currentSum == target) {         foundSum = 1;     }      // Return the current subtree sum     return currentSum; }  // Function to check if there is a subtree with the given sum bool hasSubtreeWithGivenSum(Node* root, int sum) {     int foundSum = 0;      // Traverse the tree and check for the target sum     subtreeSum(root, foundSum, sum);      // Return true if a subtree with the given sum was found     return foundSum == 1; }  int main() {        // Creating the given binary tree     //        1     //       / \     //      3   6     //     / \   /     //    5   9 8      Node* root = new Node(1);     root->left = new Node(3);     root->right = new Node(6);     root->left->left = new Node(5);     root->left->right = new Node(9);     root->right->left = new Node(8);      if(hasSubtreeWithGivenSum(root, 17)) {       cout << "True";     }   	else cout << "False";     return 0; } 
C
// C program to find if there is a subtree with // given sum  #include <stdio.h> #include <stdlib.h>  struct Node {     int data;     struct Node* left;     struct Node* right; };  // Function to calculate the sum of the subtree rooted at the given node int subtreeSum(struct Node* root, int* foundSum, int target) {        // Base case: If the node is NULL, return 0     if (root == NULL)         return 0;      // Calculate the sum of the current subtree     int currentSum = root->data +                      subtreeSum(root->left, foundSum, target) +                      subtreeSum(root->right, foundSum, target);      // If the current subtree sum matches the target,      // set foundSum to 1     if (currentSum == target) {         *foundSum = 1;     }      // Return the current subtree sum     return currentSum; }  // Function to check if there is a subtree with the given sum int hasSubtreeWithGivenSum(struct Node* root, int sum) {     int foundSum = 0;      // Traverse the tree and check for the target sum     subtreeSum(root, &foundSum, sum);      // Return true if a subtree with the given sum was found     return foundSum == 1; }  struct Node* createNode(int x) {     struct Node* newNode =        (struct Node*)malloc(sizeof(struct Node));     newNode->data = x;     newNode->left = NULL;     newNode->right = NULL;     return newNode; }  int main() {        // Creating the given binary tree     //        1     //       / \     //      3   6     //     / \   /     //    5   9 8      struct Node* root = createNode(1);     root->left = createNode(3);     root->right = createNode(6);     root->left->left = createNode(5);     root->left->right = createNode(9);     root->right->left = createNode(8);           if(hasSubtreeWithGivenSum(root, 17)) {       	printf("True");     }   	else printf("False");      return 0; } 
Java
// Java program to find if there is a subtree with // given sum  class Node {     int data;     Node left, right;      Node(int x) {         data = x;         left = right = null;     } }  class GfG {      // Function to calculate the sum of the subtree    	// rooted at the given node     static int subtreeSum(Node root, boolean[] foundSum, int target) {                // Base case: If the node is NULL, return 0         if (root == null)             return 0;          // Calculate the sum of the current subtree         int currentSum = root.data +                          subtreeSum(root.left, foundSum, target) +                          subtreeSum(root.right, foundSum, target);          // If the current subtree sum matches the target,          // set foundSum to true         if (currentSum == target) {             foundSum[0] = true;         }          // Return the current subtree sum         return currentSum;     }      // Function to check if there is a subtree with the given sum     static boolean hasSubtreeWithGivenSum(Node root, int sum) {         boolean[] foundSum = new boolean[1];          // Traverse the tree and check for the target sum         subtreeSum(root, foundSum, sum);          // Return true if a subtree with the given sum was found         return foundSum[0];     }      public static void main(String[] args) {                // Creating the given binary tree         //        1         //       / \         //      3   6         //     / \   /         //    5   9 8          Node root = new Node(1);         root.left = new Node(3);         root.right = new Node(6);         root.left.left = new Node(5);         root.left.right = new Node(9);         root.right.left = new Node(8);          System.out.println(hasSubtreeWithGivenSum(root, 17));     } } 
Python
# Python program to find if there is a subtree with # given sum  # Node definition for a binary tree class Node:     def __init__(self, x):         self.data = x         self.left = None         self.right = None  # Function to calculate the sum of the subtree  # rooted at the given node def subtreeSum(root, foundSum, target):        # Base case: If the node is NULL, return 0     if root is None:         return 0      # Calculate the sum of the current subtree     currentSum = (root.data +                   subtreeSum(root.left, foundSum, target) +                   subtreeSum(root.right, foundSum, target))      # If the current subtree sum matches the target,     # set foundSum to True     if currentSum == target:         foundSum[0] = True      # Return the current subtree sum     return currentSum  # Function to check if there is a subtree with the given sum def hasSubtreeWithGivenSum(root, sum):     foundSum = [False]      # Traverse the tree and check for the target sum     subtreeSum(root, foundSum, sum)      # Return true if a subtree with the given sum was found     return foundSum[0]  if __name__ == "__main__":        # Creating the given binary tree     #        1     #       / \     #      3   6     #     / \   /     #    5   9 8      root = Node(1)     root.left = Node(3)     root.right = Node(6)     root.left.left = Node(5)     root.left.right = Node(9)     root.right.left = Node(8)      print(hasSubtreeWithGivenSum(root, 17)) 
C#
// C# program to find if there is a subtree with // given sum  using System;  class Node {     public int data;     public Node left, right;      public Node(int x) {         data = x;         left = right = null;     } }  class GfG {      // Function to calculate the sum of the subtree    	// rooted at the given node     static int SubtreeSum(Node root, ref bool foundSum, int target) {                // Base case: If the node is NULL, return 0         if (root == null)             return 0;          // Calculate the sum of the current subtree         int currentSum = root.data +                          SubtreeSum(root.left, ref foundSum, target) +                          SubtreeSum(root.right, ref foundSum, target);          // If the current subtree sum matches the target,          // set foundSum to true         if (currentSum == target) {             foundSum = true;         }          // Return the current subtree sum         return currentSum;     }      // Function to check if there is a subtree with the given sum     static bool HasSubtreeWithGivenSum(Node root, int sum) {         bool foundSum = false;          // Traverse the tree and check for the target sum         SubtreeSum(root, ref foundSum, sum);          // Return true if a subtree with the given sum was found         return foundSum;     }      static void Main(string[] args) {                // Creating the given binary tree         //        1         //       / \         //      3   6         //     / \   /         //    5   9 8          Node root = new Node(1);         root.left = new Node(3);         root.right = new Node(6);         root.left.left = new Node(5);         root.left.right = new Node(9);         root.right.left = new Node(8);          Console.WriteLine(HasSubtreeWithGivenSum(root, 17));     } } 
JavaScript
// JavaScript program to find if there is a subtree with // given sum  // Node definition for a binary tree class Node {     constructor(x) {         this.data = x;         this.left = null;         this.right = null;     } }  // Function to calculate the sum of the subtree  // rooted at the given node function subtreeSum(root, foundSum, target) {      // Base case: If the node is NULL, return 0     if (root === null)         return 0;      // Calculate the sum of the current subtree     let currentSum = root.data +                      subtreeSum(root.left, foundSum, target) +                      subtreeSum(root.right, foundSum, target);      // If the current subtree sum matches the target,      // set foundSum to true     if (currentSum === target) {         foundSum.value = true;     }      // Return the current subtree sum     return currentSum; }  // Function to check if there is a subtree with the given sum function hasSubtreeWithGivenSum(root, sum) {     let foundSum = { value: false };      // Traverse the tree and check for the target sum     subtreeSum(root, foundSum, sum);      // Return true if a subtree with the given sum was found     return foundSum.value; }  // Creating the given binary tree //        1 //       / \ //      3   6 //     / \   / //    5   9 8  let root = new Node(1); root.left = new Node(3); root.right = new Node(6); root.left.left = new Node(5); root.left.right = new Node(9); root.right.left = new Node(8);  console.log(hasSubtreeWithGivenSum(root, 17)); 

Output
True

Time Complexity: O(n), As we are visiting every node once.
Auxiliary space: O(h), here h is the height of the tree and the extra space is used due to the recursion call stack.

[Expected Approach – 2] Using HashMap- O(n) Time and O(n) Space

The idea is to use an iterative depth-first traversal of the binary tree while maintaining a running sum of the node values encountered so far. We will use a hashmap to keep track of the prefix sums encountered during the traversal.

Follow the steps below to solve the problem:

  • Start with the root node of the binary tree and push it onto the stack.
  • While the stack is not empty, repeatedly:
    • Pop the top node from the stack.
    • Update the running sum by adding the current node’s value.
    • Check if (current sum – target sum) exists in the prefixSumMap. If it does, it means there is a subtree with the required sum.
    • Add or update the current running sum in the prefixSumMap to keep track of sums encountered.
    • Push the right and left children of the current node onto the stack (if they exist) to continue the traversal.

Below is the implementation of the above approach: 

C++
// C++ program to find if there is a subtree with // given sum  #include <bits/stdc++.h> using namespace std;  class Node { public:     int val;     Node* left;     Node* right;      Node(int x) {         val = x;         left = nullptr;         right = nullptr;     } };  // Function to check if there is a subtree with the given sum bool hasSubtreeWithGivenSum(Node* root, int target) {     if (root == nullptr)         return false;      // Map to store the prefix sums     unordered_map<int, int> prefixSumMap;     prefixSumMap[0] = 1;       int sum = 0;       stack<Node*> st;       st.push(root);      // Iterative depth-first traversal     while (!st.empty()) {         Node* curr = st.top();         st.pop();          // Update the running sum with the        	// current node's value         sum += curr->val;          // Check if we have encountered (sum - target) before         if (prefixSumMap.find(sum - target) != prefixSumMap.end()) {             return true;         }          // Add the current running sum to the map         prefixSumMap[sum] = 1;          // Traverse the right and left children         if (curr->right) {             st.push(curr->right);         }         if (curr->left) {             st.push(curr->left);         }     }      // If no subtree with the given sum is found     return false; }  int main() {      // Creating the given binary tree     //        1     //       / \     //      3   6     //     / \   /     //    5   9 8      Node* root = new Node(1);     root->left = new Node(3);     root->right = new Node(6);     root->left->left = new Node(5);     root->left->right = new Node(9);     root->right->left = new Node(8);      if(hasSubtreeWithGivenSum(root, 17)) {       cout << "True";     }   	else cout << "False";      return 0; } 
Java
// Java program to find if there is a subtree with // given sum  import java.util.HashMap; import java.util.Stack;  class Node {     int val;     Node left, right;      Node(int x) {         val = x;         left = null;         right = null;     } }  // Function to check if there is a subtree  // with the given sum class GfG {      static boolean hasSubtreeWithGivenSum(Node root, int target) {         if (root == null)             return false;          // Map to store the prefix sums         HashMap<Integer, Integer> prefixSumMap = new HashMap<>();         prefixSumMap.put(0, 1);          int sum = 0;         Stack<Node> st = new Stack<>();         st.push(root);          // Iterative depth-first traversal         while (!st.isEmpty()) {             Node curr = st.pop();              // Update the running sum with the current node's value             sum += curr.val;              // Check if we have encountered (sum - target) before             if (prefixSumMap.containsKey(sum - target)) {                 return true;             }              // Add the current running sum to the map             prefixSumMap.put(sum, 1);              // Traverse the right and left children             if (curr.right != null) {                 st.push(curr.right);             }             if (curr.left != null) {                 st.push(curr.left);             }         }          // If no subtree with the given sum is found         return false;     }      public static void main(String[] args) {          // Creating the given binary tree         //        1         //       / \         //      3   6         //     / \   /         //    5   9 8          Node root = new Node(1);         root.left = new Node(3);         root.right = new Node(6);         root.left.left = new Node(5);         root.left.right = new Node(9);         root.right.left = new Node(8);          System.out.println(hasSubtreeWithGivenSum(root, 17));     } } 
Python
# Python program to find if there is a subtree with # given sum  class Node:     def __init__(self, x):         self.val = x         self.left = None         self.right = None  # Function to check if there is a subtree with the given sum def has_subtree_with_given_sum(root, target):     if root is None:         return False      # Map to store the prefix sums     prefix_sum_map = {0: 1}      sum = 0     stack = [root]      # Iterative depth-first traversal     while stack:         curr = stack.pop()          # Update the running sum with the current node's value         sum += curr.val          # Check if we have encountered (sum - target) before         if (sum - target) in prefix_sum_map:             return True          # Add the current running sum to the map         prefix_sum_map[sum] = 1          # Traverse the right and left children         if curr.right:             stack.append(curr.right)         if curr.left:             stack.append(curr.left)      # If no subtree with the given sum is found     return False  # Creating the given binary tree #        1 #       / \ #      3   6 #     / \   / #    5   9 8  root = Node(1) root.left = Node(3) root.right = Node(6) root.left.left = Node(5) root.left.right = Node(9) root.right.left = Node(8)  print(has_subtree_with_given_sum(root, 17)) 
C#
// C# program to find if there is a subtree with // given sum  using System; using System.Collections.Generic;  class Node {     public int Val;     public Node Left;     public Node Right;      public Node(int x) {         Val = x;         Left = null;         Right = null;     } }  // Function to check if there is a subtree  // with the given sum class GfG {     static bool HasSubtreeWithGivenSum(Node root, int target) {         if (root == null)             return false;          // Map to store the prefix sums         Dictionary<int, int> prefixSumMap = new Dictionary<int, int>();         prefixSumMap[0] = 1;          int sum = 0;         Stack<Node> stack = new Stack<Node>();         stack.Push(root);          // Iterative depth-first traversal         while (stack.Count > 0) {             Node curr = stack.Pop();              // Update the running sum with the current node's value             sum += curr.Val;              // Check if we have encountered (sum - target) before             if (prefixSumMap.ContainsKey(sum - target)) {                 return true;             }              // Add the current running sum to the map             prefixSumMap[sum] = 1;              // Traverse the right and left children             if (curr.Right != null) {                 stack.Push(curr.Right);             }             if (curr.Left != null) {                 stack.Push(curr.Left);             }         }          // If no subtree with the given sum is found         return false;     }      static void Main() {                // Creating the given binary tree         //        1         //       / \         //      3   6         //     / \   /         //    5   9 8          Node root = new Node(1);         root.Left = new Node(3);         root.Right = new Node(6);         root.Left.Left = new Node(5);         root.Left.Right = new Node(9);         root.Right.Left = new Node(8);          Console.WriteLine(HasSubtreeWithGivenSum(root, 17));     } } 
JavaScript
// JavaScript program to find if there is a subtree with // given sum  class Node {     constructor(x) {         this.val = x;         this.left = null;         this.right = null;     } }  // Function to check if there is a subtree with the given sum function hasSubtreeWithGivenSum(root, target) {     if (root === null) return false;      // Map to store the prefix sums     const prefixSumMap = new Map();     prefixSumMap.set(0, 1);      let sum = 0;     const stack = [root];      // Iterative depth-first traversal     while (stack.length > 0) {         const curr = stack.pop();          // Update the running sum with the current node's value         sum += curr.val;          // Check if we have encountered (sum - target) before         if (prefixSumMap.has(sum - target)) {             return true;         }          // Add the current running sum to the map         prefixSumMap.set(sum, 1);          // Traverse the right and left children         if (curr.right) {             stack.push(curr.right);         }         if (curr.left) {             stack.push(curr.left);         }     }      // If no subtree with the given sum is found     return false; }  // Creating the given binary tree //        1 //       / \ //      3   6 //     / \   / //    5   9 8  const root = new Node(1); root.left = new Node(3); root.right = new Node(6); root.left.left = new Node(5); root.left.right = new Node(9); root.right.left = new Node(8);  console.log(hasSubtreeWithGivenSum(root, 17)); 

Output
True

Time complexity : O(n), As we are visiting every node once.
Auxiliary Space : O(n)



Next Article
Succinct Encoding of Binary Tree

S

Shashank Mishra ( Gullu )
Improve
Article Tags :
  • DSA
  • Tree
Practice Tags :
  • Tree

Similar Reads

  • Binary Tree Data Structure
    A Binary Tree Data Structure is a hierarchical data structure in which each node has at most two children, referred to as the left child and the right child. It is commonly used in computer science for efficient storage and retrieval of data, with various operations such as insertion, deletion, and
    3 min read
  • Introduction to Binary Tree
    Binary Tree is a non-linear and hierarchical data structure where each node has at most two children referred to as the left child and the right child. The topmost node in a binary tree is called the root, and the bottom-most nodes are called leaves. Representation of Binary TreeEach node in a Binar
    15+ min read
  • Properties of Binary Tree
    This post explores the fundamental properties of a binary tree, covering its structure, characteristics, and key relationships between nodes, edges, height, and levels Note: Height of root node is considered as 0. Properties of Binary Trees1. Maximum Nodes at Level 'l'A binary tree can have at most
    4 min read
  • Applications, Advantages and Disadvantages of Binary Tree
    A binary tree is a tree that has at most two children for any of its nodes. There are several types of binary trees. To learn more about them please refer to the article on "Types of binary tree" Applications:General ApplicationsDOM in HTML: Binary trees help manage the hierarchical structure of web
    2 min read
  • Binary Tree (Array implementation)
    Given an array that represents a tree in such a way that array indexes are values in tree nodes and array values give the parent node of that particular index (or node). The value of the root node index would always be -1 as there is no parent for root. Construct the standard linked representation o
    6 min read
  • Maximum Depth of Binary Tree
    Given a binary tree, the task is to find the maximum depth of the tree. The maximum depth or height of the tree is the number of edges in the tree from the root to the deepest node. Examples: Input: Output: 2Explanation: The longest path from the root (node 12) goes through node 8 to node 5, which h
    11 min read
  • Insertion in a Binary Tree in level order
    Given a binary tree and a key, the task is to insert the key into the binary tree at the first position available in level order manner. Examples: Input: key = 12 Output: Explanation: Node with value 12 is inserted into the binary tree at the first position available in level order manner. Approach:
    8 min read
  • Deletion in a Binary Tree
    Given a binary tree, the task is to delete a given node from it by making sure that the tree shrinks from the bottom (i.e. the deleted node is replaced by the bottom-most and rightmost node). This is different from BST deletion. Here we do not have any order among elements, so we replace them with t
    12 min read
  • Enumeration of Binary Trees
    A Binary Tree is labeled if every node is assigned a label and a Binary Tree is unlabelled if nodes are not assigned any label. Below two are considered same unlabelled trees o o / \ / \ o o o o Below two are considered different labelled trees A C / \ / \ B C A B How many different Unlabelled Binar
    3 min read
  • Types of Binary Tree

    • Types of Binary Tree
      We have discussed Introduction to Binary Tree in set 1 and the Properties of Binary Tree in Set 2. In this post, common types of Binary Trees are discussed. Types of Binary Tree based on the number of children:Following are the types of Binary Tree based on the number of children: Full Binary TreeDe
      7 min read

    • Complete Binary Tree
      We know a tree is a non-linear data structure. It has no limitation on the number of children. A binary tree has a limitation as any node of the tree has at most two children: a left and a right child. What is a Complete Binary Tree?A complete binary tree is a special type of binary tree where all t
      7 min read

    • Perfect Binary Tree
      What is a Perfect Binary Tree? A perfect binary tree is a special type of binary tree in which all the leaf nodes are at the same depth, and all non-leaf nodes have two children. In simple terms, this means that all leaf nodes are at the maximum depth of the tree, and the tree is completely filled w
      4 min read

geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences