Subset Sum Queries in a Range using Bitset
Last Updated : 21 Mar, 2023
Given an array[] of N positive integers and M queries. Each query consists of two integers L and R represented by a range. For each query, find the count of numbers that lie in the given range which can be expressed as the sum of any subset of given array.
Prerequisite : Subset Sum Queries using Bitset
Examples:
Input : arr[] = { 1, 2, 2, 3, 5 }, M = 4 L = 1, R = 2 L = 1, R = 5 L = 3, R = 6 L = 9, R = 30
Output : 2 5 4 5
Explanation : For the first query, in range [1, 2] all numbers i.e. 1 and 2 can be expressed as a subset sum, 1 as 1, 2 as 2. For the second query, in range [1, 5] all numbers i.e. 1, 2, 3, 4 and 5 can be expressed as subset sum, 1 as 1, 2 as 2, 3 as 3, 4 as 2 + 2 or 1 + 3, 5 as 5. For the third query, in range [3, 6], all numbers i.e. 3, 4, 5 and 6 can be expressed as subset sum. For the last query, only numbers 9, 10, 11, 12, 13 can be expressed as subset sum, 9 as 5 + 2 + 2, 10 as 5 + 2 + 2 + 1, 11 as 5 + 3 + 2 + 1, 12 as 5 + 3 + 2 + 2 and 13 as 5 + 3 + 2 + 2 + 1.
Approach: The idea is to use a bitset and iterate over the array to represent all possible subset sums. The current state of bitset is defined by ORing it with the previous state of bitset left shifted X times where X is the current element processed in the array. To answer the queries in O(1) time, we can precompute the count of numbers upto every number and for a range [L, R], the answer would be pre[R] - pre[L - 1], where pre[] is the precomputed array.
Below is the implementation of the above approach.
C++ // CPP Program to answer subset // sum queries in a given range #include <bits/stdc++.h> using namespace std; const int MAX = 1001; bitset<MAX> bit; // precomputation array int pre[MAX]; // structure to represent query struct que { int L, R; }; void answerQueries(int Q, que Queries[], int N, int arr[]) { // Setting bit at 0th position as 1 bit[0] = 1; for (int i = 0; i < N; i++) bit |= (bit << arr[i]); // Precompute the array for (int i = 1; i < MAX; i++) pre[i] = pre[i - 1] + bit[i]; // Answer Queries for (int i = 0; i < Q; i++) { int l = Queries[i].L; int r = Queries[i].R; cout << pre[r] - pre[l - 1] << endl; } } // Driver Code to test above function int main() { int arr[] = { 1, 2, 2, 3, 5 }; int N = sizeof(arr) / sizeof(arr[0]); int M = 4; que Queries[M]; Queries[0].L = 1, Queries[0].R = 2; Queries[1].L = 1, Queries[1].R = 5; Queries[2].L = 3, Queries[2].R = 6; Queries[3].L = 9, Queries[3].R = 30; answerQueries(M, Queries, N, arr); return 0; }
Java import java.util.Arrays; // Class to represent query class Que { int L, R; Que(int L, int R) { this.L = L; this.R = R; } } public class Main { private static final int MAX = 1001; private static boolean[] bit = new boolean[MAX]; // Precomputation array private static int[] pre = new int[MAX]; public static void answerQueries(int Q, Que[] Queries, int N, int[] arr) { // Setting bit at 0th position as 1 bit[0] = true; for (int i = 0; i < N; i++) { for (int j = MAX - 1; j >= arr[i]; j--) { bit[j] |= bit[j - arr[i]]; } } // Precompute the array for (int i = 1; i < MAX; i++) { pre[i] = pre[i - 1] + (bit[i] ? 1 : 0); } // Answer Queries for (int i = 0; i < Q; i++) { int l = Queries[i].L; int r = Queries[i].R; System.out.println(pre[r] - pre[l - 1]); } } // Driver Code to test above function public static void main(String[] args) { int[] arr = {1, 2, 2, 3, 5}; int N = arr.length; int M = 4; Que[] Queries = {new Que(1, 2), new Que(1, 5), new Que(3, 6), new Que(9, 30)}; answerQueries(M, Queries, N, arr); } }
Python3 from typing import List MAX = 1001 bit = [0] * MAX # precomputation array pre = [0] * MAX # structure to represent query class Que: def __init__(self, L, R): self.L = L self.R = R def answerQueries(Q: int, Queries: List[Que], N: int, arr: List[int]) -> None: global bit, pre # Setting bit at 0th position as 1 bit[0] = 1 for i in range(N): bit = [b or (bit[j - arr[i]] if j - arr[i] >= 0 else 0) for j, b in enumerate(bit)] # Precompute the array for i in range(1, MAX): pre[i] = pre[i - 1] + bit[i] # Answer Queries for i in range(Q): l = Queries[i].L r = Queries[i].R print(pre[r] - pre[l - 1]) # Driver Code to test above function if __name__ == "__main__": arr = [1, 2, 2, 3, 5] N = len(arr) M = 4 Queries = [Que(1, 2), Que(1, 5), Que(3, 6), Que(9, 30)] answerQueries(M, Queries, N, arr)
C# using System; public class GFG { private const int MAX = 1001; private static bool[] bit = new bool[MAX]; // Precomputation array private static int[] pre = new int[MAX]; // Class to represent query public class Que { public int L, R; public Que(int L, int R) { this.L = L; this.R = R; } } public static void answerQueries(int Q, Que[] Queries, int N, int[] arr) { // Setting bit at 0th position as 1 bit[0] = true; for (int i = 0; i < N; i++) { for (int j = MAX - 1; j >= arr[i]; j--) { bit[j] |= bit[j - arr[i]]; } } // Precompute the array for (int i = 1; i < MAX; i++) { pre[i] = pre[i - 1] + (bit[i] ? 1 : 0); } // Answer Queries for (int i = 0; i < Q; i++) { int l = Queries[i].L; int r = Queries[i].R; Console.WriteLine(pre[r] - pre[l - 1]); } } // Driver Code to test above function public static void Main(String[] args) { int[] arr = { 1, 2, 2, 3, 5 }; int N = arr.Length; int M = 4; Que[] Queries = { new Que(1, 2), new Que(1, 5), new Que(3, 6), new Que(9, 30) }; answerQueries(M, Queries, N, arr); } }
JavaScript // JavaScript Program to answer subset // sum queries in a given range const MAX = 1001; let bit = Array(MAX).fill(0); // precomputation array let pre = Array(MAX).fill(0); // class to represent query class Que { constructor(L, R) { this.L = L; this.R = R; } } function answerQueries(Q, Queries, N, arr) { // Setting bit at 0th position as 1 bit[0] = 1; for (let i = 0; i < N; i++) { for (let j = MAX - 1; j >= arr[i]; j--) { bit[j] |= bit[j - arr[i]]; } }// Precompute the array for (let i = 1; i < MAX; i++) { pre[i] = pre[i - 1] + bit[i]; } // Answer Queries for (let i = 0; i < Q; i++) { let l = Queries[i].L; let r = Queries[i].R; console.log(pre[r] - pre[l - 1]); } } // Driver Code to test above function let arr = [1, 2, 2, 3, 5]; let N = arr.length; let M = 4; let Queries = [new Que(1, 2), new Que(1, 5), new Que(3, 6), new Que(9, 30)]; answerQueries(M, Queries, N, arr);
Time Complexity: Each query can be answered in O(1) time and precomputation requires O(MAX) time.
Auxiliary Space: O(MAX)
Similar Reads
Subset sum queries using bitset Given an array arr[] and a number of queries, where in each query we have to check whether a subset whose sum is equal to given number exists in the array or not. Examples: Input : arr[] = {1, 2, 3}; query[] = {5, 3, 8} Output : Yes, Yes, NoThere is a subset with sum 5, subset is {2, 3}There is a su
9 min read
Queries for Sum of Bitwise AND of all Subarrays in a Range Given an array arr[] of size N, the task is to answer a set of Q queries, each in the format of queries[i][0] and queries[i][1]. For each queries[i], find the sum of Bitwise AND of all subarrays whose elements lie in the range [queries[i][0], queries[i][1]]. Examples: Input: N = 3, arr[] = {1, 0, 2}
12 min read
Count number of distinct sum subsets within given range Given a set S of N numbers and a range specified by two numbers L (Lower Bound) and R (Upper Bound). Find the number of distinct values of all possible sums of some subset of S that lie between the given range. Examples : Input : S = { 1, 2, 2, 3, 5 }, L = 1 and R = 5 Output : 5 Explanation : Every
8 min read
Count unset bits in a range Given a non-negative number n and two values l and r. The problem is to count the number of unset bits in the range l to r in the binary representation of n, i.e, to count unset bits from the rightmost lth bit to the rightmost rth bit.Examples: Input : n = 42, l = 2, r = 5 Output : 2 (42)10 = (10101
6 min read
Count set bits in a range Given a non-negative number n and two values l and r. The problem is to count the number of set bits in the range l to r in the binary representation of n, i.e, to count set bits from the rightmost lth bit to the rightmost rth bit. Constraint: 1 <= l <= r <= number of bits in the binary rep
6 min read