Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
    • Practice Coding Problems
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • DSA
  • Interview Problems on DP
  • Practice DP
  • MCQs on DP
  • Tutorial on Dynamic Programming
  • Optimal Substructure
  • Overlapping Subproblem
  • Memoization
  • Tabulation
  • Tabulation vs Memoization
  • 0/1 Knapsack
  • Unbounded Knapsack
  • Subset Sum
  • LCS
  • LIS
  • Coin Change
  • Word Break
  • Egg Dropping Puzzle
  • Matrix Chain Multiplication
  • Palindrome Partitioning
  • DP on Arrays
  • DP with Bitmasking
  • Digit DP
  • DP on Trees
  • DP on Graph
Open In App
Next Article:
Subset Sum is NP Complete
Next article icon

Subset Sum Problem in O(sum) space

Last Updated : 16 May, 2024
Comments
Improve
Suggest changes
Like Article
Like
Report

Given an array of non-negative integers and a value sum, determine if there is a subset of the given set with sum equal to given sum.

Examples: 

Input: arr[] = {4, 1, 10, 12, 5, 2}, sum = 9
Output: TRUE
Explanation: {4, 5} is a subset with sum 9.

Input: arr[] = {1, 8, 2, 5}, sum = 4
Output: FALSE
Explanation: There exists no subset with sum 4.

Recommended Practice: Subset Sum Problem. Try It!

We have discussed a Dynamic Programming based solution in the post "Dynamic Programming | Set 25 (Subset Sum Problem)".

Subset Sum Problem in O(sum) space using 2D array:

The solution discussed above requires O(n * sum) space and O(n * sum) time. We can optimize space. We create a boolean 2D array subset[2][sum+1]. Using bottom-up manner we can fill up this table. The idea behind using 2 in "subset[2][sum+1]" is that for filling a row only the values from previous row are required. So alternate rows are used either making the first one as current and second as previous or the first as previous and second as current. 

Below is the implementation of the above approach:

C++
#include <iostream> using namespace std;  bool isSubsetSum(int arr[], int n, int sum) {     // The value of subset[i][j] will be true      // if there exists a subset of sum j in      // arr[0, 1, ...., i-1]     bool subset[n+1][sum + 1];      for (int i = 0; i <= n; i++) {         for (int j = 0; j <= sum; j++) {              // A subset with sum 0 is always possible              if (j == 0)                 subset[i][j] = true;               // If there exists no element no sum              // is possible              else if (i == 0)                 subset[i][j] = false;              else if (arr[i - 1] <= j)                 subset[i][j] = subset[i - 1][j - arr[i - 1]] || subset[i - 1][j];             else                 subset[i][j] = subset[i - 1][j];         }     }      return subset[n][sum]; }  // Driver code int main() {     int arr[] = { 6, 2, 5 };     int sum = 7;     int n = sizeof(arr) / sizeof(arr[0]);     if (isSubsetSum(arr, n, sum) == true)         cout <<"There exists a subset with given sum";     else         cout <<"No subset exists with given sum";     return 0; } 
C
// Returns true if there exists a subset // with given sum in arr[] #include <stdio.h> #include <stdbool.h>  bool isSubsetSum(int arr[], int n, int sum) {     // The value of subset[i%2][j] will be true      // if there exists a subset of sum j in      // arr[0, 1, ...., i-1]     bool subset[2][sum + 1];      for (int i = 0; i <= n; i++) {         for (int j = 0; j <= sum; j++) {              // A subset with sum 0 is always possible              if (j == 0)                 subset[i % 2][j] = true;               // If there exists no element no sum              // is possible              else if (i == 0)                 subset[i % 2][j] = false;              else if (arr[i - 1] <= j)                 subset[i % 2][j] = subset[(i + 1) % 2]              [j - arr[i - 1]] || subset[(i + 1) % 2][j];             else                 subset[i % 2][j] = subset[(i + 1) % 2][j];         }     }      return subset[n % 2][sum]; }  // Driver code int main() {     int arr[] = { 6, 2, 5 };     int sum = 7;     int n = sizeof(arr) / sizeof(arr[0]);     if (isSubsetSum(arr, n, sum) == true)         printf("There exists a subset with given sum");     else         printf("No subset exists with given sum");     return 0; } 
Java
// Java Program to get a subset with a  // with a sum provided by the user public class Subset_sum {          // Returns true if there exists a subset     // with given sum in arr[]     static boolean isSubsetSum(int arr[], int n, int sum)     {         // The value of subset[i%2][j] will be true          // if there exists a subset of sum j in          // arr[0, 1, ...., i-1]         boolean subset[][] = new boolean[2][sum + 1];               for (int i = 0; i <= n; i++) {             for (int j = 0; j <= sum; j++) {                       // A subset with sum 0 is always possible                  if (j == 0)                     subset[i % 2][j] = true;                        // If there exists no element no sum                  // is possible                  else if (i == 0)                     subset[i % 2][j] = false;                  else if (arr[i - 1] <= j)                     subset[i % 2][j] = subset[(i + 1) % 2]                  [j - arr[i - 1]] || subset[(i + 1) % 2][j];                 else                     subset[i % 2][j] = subset[(i + 1) % 2][j];             }         }               return subset[n % 2][sum];     }           // Driver code     public static void main(String args[])     {         int arr[] = { 1, 2, 5 };         int sum = 7;         int n = arr.length;         if (isSubsetSum(arr, n, sum) == true)             System.out.println("There exists a subset with" +                                                " given sum");         else             System.out.println("No subset exists with" +                                             " given sum");     } } // This code is contributed by Sumit Ghosh 
Python
# Returns true if there exists a subset # with given sum in arr[]   def isSubsetSum(arr, n, sum):      # The value of subset[i%2][j] will be true     # if there exists a subset of sum j in     # arr[0, 1, ...., i-1]     subset = [[False for j in range(sum + 1)] for i in range(3)]      for i in range(n + 1):         for j in range(sum + 1):             # A subset with sum 0 is always possible             if (j == 0):                 subset[i % 2][j] = True              # If there exists no element no sum             # is possible             elif (i == 0):                 subset[i % 2][j] = False             elif (arr[i - 1] <= j):                 subset[i % 2][j] = subset[(i + 1) % 2][j - arr[i - 1]] or subset[(i + 1)                                                                                  % 2][j]             else:                 subset[i % 2][j] = subset[(i + 1) % 2][j]      return subset[n % 2][sum]   # Driver code arr = [6, 2, 5] sum = 7 n = len(arr) if (isSubsetSum(arr, n, sum) == True):     print("There exists a subset with given sum") else:     print("No subset exists with given sum")  # This code is contributed by Sachin Bisht 
C#
// C# Program to get a subset with a  // with a sum provided by the user   using System;  public class Subset_sum {           // Returns true if there exists a subset      // with given sum in arr[]      static bool isSubsetSum(int []arr, int n, int sum)      {          // The value of subset[i%2][j] will be true          // if there exists a subset of sum j in          // arr[0, 1, ...., i-1]          bool [,]subset = new bool[2,sum + 1];               for (int i = 0; i <= n; i++) {              for (int j = 0; j <= sum; j++) {                       // A subset with sum 0 is always possible                  if (j == 0)                      subset[i % 2,j] = true;                       // If there exists no element no sum                  // is possible                  else if (i == 0)                      subset[i % 2,j] = false;                  else if (arr[i - 1] <= j)                      subset[i % 2,j] = subset[(i + 1) % 2,j - arr[i - 1]] || subset[(i + 1) % 2,j];                  else                     subset[i % 2,j] = subset[(i + 1) % 2,j];              }          }               return subset[n % 2,sum];      }           // Driver code      public static void Main()      {          int []arr = { 1, 2, 5 };          int sum = 7;          int n = arr.Length;          if (isSubsetSum(arr, n, sum) == true)              Console.WriteLine("There exists a subset with" +                                          "given sum");          else             Console.WriteLine("No subset exists with" +                                          "given sum");      }  }  // This code is contributed by Ryuga  
JavaScript
<script>  // Javascript Program to get a subset with a  // with a sum provided by the user      // Returns true if there exists a subset     // with given sum in arr[]     function isSubsetSum(arr, n, sum)     {         // The value of subset[i%2][j] will be true          // if there exists a subset of sum j in          // arr[0, 1, ...., i-1]         let subset = new Array(2);                  // Loop to create 2D array using 1D array         for (var i = 0; i < subset.length; i++) {             subset[i] = new Array(2);         }                 for (let i = 0; i <= n; i++) {             for (let j = 0; j <= sum; j++) {                         // A subset with sum 0 is always possible                  if (j == 0)                     subset[i % 2][j] = true;                          // If there exists no element no sum                  // is possible                  else if (i == 0)                     subset[i % 2][j] = false;                  else if (arr[i - 1] <= j)                     subset[i % 2][j] = subset[(i + 1) % 2]                  [j - arr[i - 1]] || subset[(i + 1) % 2][j];                 else                     subset[i % 2][j] = subset[(i + 1) % 2][j];             }         }                 return subset[n % 2][sum];     }  // driver program         let arr = [ 1, 2, 5 ];         let sum = 7;         let n = arr.length;         if (isSubsetSum(arr, n, sum) == true)             document.write("There exists a subset with" +                                                "given sum");         else             document.write("No subset exists with" +                                             "given sum");  // This code is contributed by code_hunt. </script> 
PHP
<?php // Returns true if there exists a subset // with given sum in arr[]  function isSubsetSum($arr, $n, $sum) {     // The value of subset[i%2][j] will be      // true if there exists a subset of      // sum j in arr[0, 1, ...., i-1]     $subset[2][$sum + 1] = array();      for ($i = 0; $i <= $n; $i++)      {         for ($j = 0; $j <= $sum; $j++)         {              // A subset with sum 0 is              // always possible              if ($j == 0)                 $subset[$i % 2][$j] = true;               // If there exists no element no              // sum is possible              else if ($i == 0)                 $subset[$i % 2][$j] = false;              else if ($arr[$i - 1] <= $j)                 $subset[$i % 2][$j] = $subset[($i + 1) % 2]                                              [$j - $arr[$i - 1]] ||                                        $subset[($i + 1) % 2][$j];             else                 $subset[$i % 2][$j] = $subset[($i + 1) % 2][$j];         }     }      return $subset[$n % 2][$sum]; }  // Driver code $arr = array( 6, 2, 5 ); $sum = 7; $n = sizeof($arr); if (isSubsetSum($arr, $n, $sum) == true)     echo ("There exists a subset with given sum"); else     echo ("No subset exists with given sum");  // This code is contributed by Sach_Code ?> 

Output
There exists a subset with given sum

Subset Sum Problem in O(sum) space using 1D array:

To further reduce space complexity, we create a boolean 1D array subset[sum+1]. Using bottom-up manner we can fill up this table. The idea is that we can check if the sum till position "i" is possible then if the current element in the array at position j is x, then sum i+x is also possible. We traverse the sum array from back to front so that we don't count any element twice. 

Below is the implementation of the above approach:

C++
#include <iostream> using namespace std;  bool isPossible(int elements[], int sum, int n) {     int dp[sum + 1] = { 0 };      // Initializing with 1 as sum 0 is     // always possible     dp[0] = 1;      // Loop to go through every element of     // the elements array     for (int i = 0; i < n; i++) {          // To change the values of all possible sum         // values to 1         for (int j = sum; j >= elements[i]; j--) {             if (dp[j - elements[i]] == 1)                 dp[j] = 1;         }     }      // If sum is possible then return 1     if (dp[sum] == 1)         return true;      return false; }  // Driver code int main() {     int elements[] = { 6, 2, 5 };     int n = sizeof(elements) / sizeof(elements[0]);     int sum = 7;      if (isPossible(elements, sum, n))         cout << ("YES");     else         cout << ("NO");      return 0; }  // This code is contributed by Potta Lokesh // This code is modified by Susobhan Akhuli 
Java
import java.io.*; import java.util.*;  class GFG {     static boolean isPossible(int elements[], int sum)     {         int dp[] = new int[sum + 1];         Arrays.fill(dp, 0);          // initializing with 1 as sum 0 is always possible         dp[0] = 1;          // loop to go through every element of the elements         // array         for (int i = 0; i < elements.length; i++) {             // to change the values of all possible sum             // values to 1             for (int j = sum; j >= elements[i]; j--) {                 if (dp[j - elements[i]] == 1)                     dp[j] = 1;             }         }          // if sum is possible then return 1         if (dp[sum] == 1)             return true;         return false;     }      public static void main(String[] args) throws Exception     {         int elements[] = { 6, 2, 5 };         int sum = 7;         if (isPossible(elements, sum))             System.out.println("YES");         else             System.out.println("NO");     } }  // This code is modified by Susobhan Akhuli 
Python
def isPossible(elements, target):      dp = [False]*(target+1)      # initializing with 1 as sum 0 is always possible     dp[0] = True      # loop to go through every element of the elements array     for ele in elements:                # to change the value o all possible sum values to True         for j in range(target, ele - 1, -1):             if dp[j - ele]:                 dp[j] = True      # If target is possible return True else False     return dp[target]  # Driver code arr = [6, 2, 5] target = 7  if isPossible(arr, target):     print("YES") else:     print("NO")  # The code is contributed by Arpan. 
C#
using System;  class GFG {     static Boolean isPossible(int[] elements, int sum)     {         int[] dp = new int[sum + 1];         Array.Fill(dp, 0);          // initializing with 1 as sum 0 is always possible         dp[0] = 1;          // loop to go through every element of the elements         // array         for (int i = 0; i < elements.Length; i++) {              // to change the values of all possible sum             // values to 1             for (int j = sum; j >= elements[i]; j--) {                 if (dp[j - elements[i]] == 1)                     dp[j] = 1;             }         }          // if sum is possible then return 1         if (dp[sum] == 1)             return true;         return false;     }      // Driver code     public static void Main(String[] args)     {         int[] elements = { 6, 2, 5 };         int sum = 7;         if (isPossible(elements, sum))             Console.Write("YES");         else             Console.Write("NO");     } }  // This code is contributed by shivanisinghss2110 // This code is modified by Susobhan Akhuli 
JavaScript
<script> function isPossible(elements, sum)     {         var dp = Array(sum+1).fill(0);                  // initializing with 1 as sum 0 is always possible         dp[0] = 1;                  // loop to go through every element of the elements         // array         for (var i = 0; i < elements.length; i++)         {                      // to change the values of all possible sum             // values to 1             for (var j = sum; j >= elements[i]; j--) {                 if (dp[j - elements[i]] == 1)                     dp[j] = 1;             }         }                  // if sum is possible then return 1         if (dp[sum] == 1)             return true;         return false;     }         var elements = [ 6, 2, 5 ];         var sum = 7;         if (isPossible(elements, sum))             document.write("YES");         else             document.write("NO");              // This code is contributed by shivanisinghss2110 // This code is modified by Susobhan Akhuli </script> 

Output
YES

Time Complexity: O(N*K) where N is the number of elements in the array and K is total sum.
Auxiliary Space: O(K), since K extra space has been taken.


Next Article
Subset Sum is NP Complete

N

Neelesh_Sinha
Improve
Article Tags :
  • Dynamic Programming
  • DSA
  • Amazon
  • Adobe
  • Drishti-Soft
  • subset
Practice Tags :
  • Adobe
  • Amazon
  • Drishti-Soft
  • Dynamic Programming
  • subset

Similar Reads

    Subset Sum Problem
    Given an array arr[] of non-negative integers and a value sum, the task is to check if there is a subset of the given array whose sum is equal to the given sum. Examples: Input: arr[] = [3, 34, 4, 12, 5, 2], sum = 9Output: TrueExplanation: There is a subset (4, 5) with sum 9.Input: arr[] = [3, 34, 4
    15+ min read

    Subset sum in Different languages

    Python Program for Subset Sum Problem | DP-25
    Write a Python program for a given set of non-negative integers and a value sum, the task is to check if there is a subset of the given set whose sum is equal to the given sum. Examples: Input: set[] = {3, 34, 4, 12, 5, 2}, sum = 9Output: TrueExplanation: There is a subset (4, 5) with sum 9. Input:
    7 min read
    Java Program for Subset Sum Problem | DP-25
    Write a Java program for a given set of non-negative integers and a value sum, the task is to check if there is a subset of the given set whose sum is equal to the given sum. Examples: Input: set[] = {3, 34, 4, 12, 5, 2}, sum = 9Output: TrueExplanation: There is a subset (4, 5) with sum 9. Input: se
    8 min read
    C Program for Subset Sum Problem | DP-25
    Write a C program for a given set of non-negative integers and a value sum, the task is to check if there is a subset of the given set whose sum is equal to the given sum. Examples: Input: set[] = {3, 34, 4, 12, 5, 2}, sum = 9Output: TrueExplanation: There is a subset (4, 5) with sum 9. Input: set[]
    8 min read
    PHP Program for Subset Sum Problem | DP-25
    Write a PHP program for a given set of non-negative integers and a value sum, the task is to check if there is a subset of the given set whose sum is equal to the given sum. Examples: Input: set[] = {3, 34, 4, 12, 5, 2}, sum = 9Output: TrueExplanation: There is a subset (4, 5) with sum 9. Input: set
    7 min read
    C# Program for Subset Sum Problem | DP-25
    Write a C# program for a given set of non-negative integers and a value sum, the task is to check if there is a subset of the given set whose sum is equal to the given sum. Examples: Input: set[] = {3, 34, 4, 12, 5, 2}, sum = 9Output: TrueExplanation: There is a subset (4, 5) with sum 9. Input: set[
    8 min read
    Subset Sum Problem using Backtracking
    Given a set[] of non-negative integers and a value sum, the task is to print the subset of the given set whose sum is equal to the given sum. Examples:  Input: set[] = {1,2,1}, sum = 3Output: [1,2],[2,1]Explanation: There are subsets [1,2],[2,1] with sum 3. Input: set[] = {3, 34, 4, 12, 5, 2}, sum =
    8 min read
    Print all subsets with given sum
    Given an array arr[] of non-negative integers and an integer target. The task is to print all subsets of the array whose sum is equal to the given target. Note: If no subset has a sum equal to target, print -1.Examples:Input: arr[] = [5, 2, 3, 10, 6, 8], target = 10Output: [ [5, 2, 3], [2, 8], [10]
    15+ min read
    Subset Sum Problem in O(sum) space
    Given an array of non-negative integers and a value sum, determine if there is a subset of the given set with sum equal to given sum. Examples: Input: arr[] = {4, 1, 10, 12, 5, 2}, sum = 9Output: TRUEExplanation: {4, 5} is a subset with sum 9. Input: arr[] = {1, 8, 2, 5}, sum = 4Output: FALSE Explan
    13 min read
    Subset Sum is NP Complete
    Prerequisite: NP-Completeness, Subset Sum Problem Subset Sum Problem: Given N non-negative integers a1...aN and a target sum K, the task is to decide if there is a subset having a sum equal to K. Explanation: An instance of the problem is an input specified to the problem. An instance of the subset
    5 min read
    Minimum Subset sum difference problem with Subset partitioning
    Given a set of N integers with up to 40 elements, the task is to partition the set into two subsets of equal size (or the closest possible), such that the difference between the sums of the subsets is minimized. If the size of the set is odd, one subset will have one more element than the other. If
    13 min read
    Maximum subset sum such that no two elements in set have same digit in them
    Given an array of N elements. Find the subset of elements which has maximum sum such that no two elements in the subset has common digit present in them.Examples: Input : array[] = {22, 132, 4, 45, 12, 223} Output : 268 Maximum Sum Subset will be = {45, 223} . All possible digits are present except
    12 min read
    Find all distinct subset (or subsequence) sums of an array
    Given an array arr[] of size n, the task is to find a distinct sum that can be generated from the subsets of the given sets and return them in increasing order. It is given that the sum of array elements is small.Examples: Input: arr[] = [1, 2]Output: [0, 1, 2, 3]Explanation: Four distinct sums can
    15+ min read
    Subset sum problem where Array sum is at most N
    Given an array arr[] of size N such that the sum of all the array elements does not exceed N, and array queries[] containing Q queries. For each query, the task is to find if there is a subset of the array whose sum is the same as queries[i]. Examples: Input: arr[] = {1, 0, 0, 0, 0, 2, 3}, queries[]
    10 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences