Given a number, check if it is square-free or not. A number is said to be square-free if no prime factor divides it more than once, i.e., the largest power of a prime factor that divides n is one. First few square-free numbers are 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, ...
Examples:
Input: n = 10
Output: Yes
Explanation: 10 can be factorized as 2*5. Since no prime factor appears more than once, it is a square free number.
Input: n = 20
Output: No
Explanation: 20 can be factorized as 2 * 2 * 5. Since prime factor appears more than once, it is not a square free number.
The idea is simple, one by one find all prime factors. For every prime factor, we check if its square also divides n. If yes, then we return false. Finally, if we do not find a prime factor that is divisible more than once, we return false.
C++ // C++ Program to print // all prime factors # include <bits/stdc++.h> using namespace std; // Returns true if n is a square free // number, else returns false. bool isSquareFree(int n) { if (n % 2 == 0) n = n/2; // If 2 again divides n, then n is // not a square free number. if (n % 2 == 0) return false; // n must be odd at this point. So we can // skip one element (Note i = i +2) for (int i = 3; i <= sqrt(n); i = i+2) { // Check if i is a prime factor if (n % i == 0) { n = n/i; // If i again divides, then // n is not square free if (n % i == 0) return false; } } return true; } // Driver Code int main() { int n = 10; if (isSquareFree(n)) cout << "Yes"; else cout << "No"; return 0; }
Java // Java Program to print // all prime factors class GFG { // Returns true if n is a square free // number, else returns false. static boolean isSquareFree(int n) { if (n % 2 == 0) n = n / 2; // If 2 again divides n, then n is // not a square free number. if (n % 2 == 0) return false; // n must be odd at this point. So we can // skip one element (Note i = i +2) for (int i = 3; i <= Math.sqrt(n); i = i + 2) { // Check if i is a prime factor if (n % i == 0) { n = n / i; // If i again divides, then // n is not square free if (n % i == 0) return false; } } return true; } /* Driver program to test above function */ public static void main(String[] args) { int n = 10; if (isSquareFree(n)) System.out.println("Yes"); else System.out.println("No"); } } // This code is contributed by prerna saini.
Python3 # Python3 Program to print # all prime factors from math import sqrt # Returns true if n is # a square free number, # else returns false. def isSquareFree(n): if n % 2 == 0: n = n / 2 # If 2 again divides n, # then n is not a square # free number. if n % 2 == 0: return False # n must be odd at this # point. So we can skip # one element # (Note i = i + 2) for i in range(3, int(sqrt(n) + 1)): # Check if i is a prime # factor if n % i == 0: n = n / i # If i again divides, then # n is not square free if n % i == 0: return False return True # Driver program n = 10 if isSquareFree(n): print ("Yes") else: print ("No") # This code is contributed by Shreyanshi Arun.
C# // C# Program to print // all prime factors using System; class GFG { // Returns true if n is a square free // number, else returns false. static bool isSquareFree(int n) { if (n % 2 == 0) n = n / 2; // If 2 again divides n, then n is // not a square free number. if (n % 2 == 0) return false; // n must be odd at this point. So we can // skip one element (Note i = i +2) for (int i = 3; i <= Math.Sqrt(n); i = i + 2) { // Check if i is a prime factor if (n % i == 0) { n = n / i; // If i again divides, then // n is not square free if (n % i == 0) return false; } } return true; } // Driver program public static void Main() { int n = 10; if (isSquareFree(n)) Console.WriteLine("Yes"); else Console.WriteLine("No"); } } // This code is contributed by vt_m.
PHP <?php // PHP Program to print // all prime factors // Returns true if n is a square free // number, else returns false. function isSquareFree($n) { if ($n % 2 == 0) $n = $n / 2; // If 2 again divides n, then n is // not a square free number. if ($n % 2 == 0) return false; // n must be odd at this // point. So we can skip // one element (Note i = i +2) for ($i = 3; $i <= sqrt($n); $i = $i + 2) { // Check if i is a prime factor if ($n % $i == 0) { $n = $n / $i; // If i again divides, then // n is not square free if ($n % $i == 0) return false; } } return true; } // Driver Code $n = 10; if (isSquareFree($n)) echo("Yes"); else echo("No"); // This code is contributed by Ajit. ?>
JavaScript <script> // JavaScript Program to print // all prime factors // Returns true if n is a square free // number, else returns false. function isSquareFree(n) { if (n % 2 == 0) n = n / 2; // If 2 again divides n, then n is // not a square free number. if (n % 2 == 0) return false; // n must be odd at this point. So we can // skip one element (Note i = i +2) for (let i = 3; i <= Math.sqrt(n); i = i + 2) { // Check if i is a prime factor if (n % i == 0) { n = n / i; // If i again divides, then // n is not square free if (n % i == 0) return false; } } return true; } // Driver code let n = 10; if (isSquareFree(n)) document.write("Yes"); else document.write("No"); </script>
Time Complexity: O(sqrt(N)), In the worst case when the number is a perfect square, then there will be sqrt(n)/2 iterations.
Auxiliary Space: O(1)
Similar Reads
Special two digit number A special two-digit number is a number such that when the sum of the digits of the number is added to the product of its digits, the result is equal to the original two-digit number. Examples : input : 59. output : 59 is a Special Two-Digit Number Explanation: Sum of digits = 5 + 9 = 14 Product of i
6 min read
Mathematical Algorithms - Number Digits "Mathematical Algorithms | Number Digits" is a guide that explores problems and solutions involving digits. It covers common digit-related issues, such as digit properties, manipulation, and counting under constraints. The article discusses algorithmic approaches like modular arithmetic, string hand
9 min read
POTD Solutions | 10 Novâ 23 | Number following a pattern Welcome to the daily solutions of our PROBLEM OF THE DAY (POTD). We will discuss the entire problem step-by-step and work towards developing an optimized solution. This will not only help you brush up on your concepts of Stack and Two Pointer Algorithm but will also help you build up problem-solving
6 min read
What is the smallest 3 digit number with unique digits? In our daily lives, we use numbers. They are frequently referred to as numerals. We canât count objects, date, time, money, or anything else without numbers. These numerals are sometimes used for measurement and other times for labeling. Numbers have features that allow them to conduct arithmetic op
5 min read
Is negative 12 a whole number? Numerals are the mathematical figures used in financial, professional as well as a social field in the social world. The digits and place value in the number and the base of the number system determine the value of a number. Numbers are used in various mathematical operations as summation, subtracti
4 min read