Split an array into subarrays with maximum Bitwise XOR of their respective Bitwise OR values
Last Updated : 08 Jul, 2021
Given an array arr[] consisting of N integers, the task is to find the maximum Bitwise XOR of Bitwise OR of every subarray after splitting the array into subarrays(possible zero subarrays).
Examples:
Input: arr[] = {1, 5, 7}, N = 3
Output: 7
Explanation:
The given array can be expressed as the 1 subarray i.e., {1, 5, 7}.
The Bitwise XOR of the Bitwise OR of the formed subarray is 7, which is the maximum possible value.
Input: arr[] = {1, 2}, N = 2
Output: 3
Naive Approach: The simplest approach to solve the given above problem is to generate all possible combinations of breaking of subarrays using recursion and at each recursive call, find the maximum value of Bitwise XOR of Bitwise OR of all possible formed subarray and print it.
Below is the implementation of the above approach:
C++ // C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Recursive function to find all the // possible breaking of arrays into // subarrays and find the maximum // Bitwise XOR int maxXORUtil(int arr[], int N, int xrr, int orr) { // If the value of N is 0 if (N == 0) return xrr ^ orr; // Stores the result if the new // group is formed with the first // element as arr[i] int x = maxXORUtil(arr, N - 1, xrr ^ orr, arr[N - 1]); // Stores if the result if the // arr[i] is included in the // last group int y = maxXORUtil(arr, N - 1, xrr, orr | arr[N - 1]); // Returns the maximum of // x and y return max(x, y); } // Function to find the maximum possible // Bitwise XOR of all possible values of // the array after breaking the arrays // into subarrays int maximumXOR(int arr[], int N) { // Return the result return maxXORUtil(arr, N, 0, 0); } // Driver Code int main() { int arr[] = { 1, 5, 7 }; int N = sizeof(arr) / sizeof(arr[0]); cout << maximumXOR(arr, N); return 0; }
Java // Java program for the above approach public class GFG{ // Recursive function to find all the // possible breaking of arrays into // subarrays and find the maximum // Bitwise XOR static int maxXORUtil(int arr[], int N, int xrr, int orr) { // If the value of N is 0 if (N == 0) return xrr ^ orr; // Stores the result if the new // group is formed with the first // element as arr[i] int x = maxXORUtil(arr, N - 1, xrr ^ orr, arr[N - 1]); // Stores if the result if the // arr[i] is included in the // last group int y = maxXORUtil(arr, N - 1, xrr, orr | arr[N - 1]); // Returns the maximum of // x and y return Math.max(x, y); } // Function to find the maximum possible // Bitwise XOR of all possible values of // the array after breaking the arrays // into subarrays static int maximumXOR(int arr[], int N) { // Return the result return maxXORUtil(arr, N, 0, 0); } // Driver code public static void main(String[] args) { int arr[] = { 1, 5, 7 }; int N = arr.length; System.out.println(maximumXOR(arr, N)); } } // This code is contributed by abhinavjain194
Python3 # C++ program for the above approach # Recursive function to find all the # possible breaking of arrays o # subarrays and find the maximum # Bitwise XOR def maxXORUtil(arr, N, xrr, orr): # If the value of N is 0 if (N == 0): return xrr ^ orr # Stores the result if the new # group is formed with the first # element as arr[i] x = maxXORUtil(arr, N - 1, xrr ^ orr, arr[N - 1]) # Stores if the result if the # arr[i] is included in the # last group y = maxXORUtil(arr, N - 1, xrr, orr | arr[N - 1]) # Returns the maximum of # x and y return max(x, y) # Function to find the maximum possible # Bitwise XOR of all possible values of # the array after breaking the arrays # o subarrays def maximumXOR(arr, N): # Return the result return maxXORUtil(arr, N, 0, 0) # Driver Code arr = 1, 5, 7 N = len(arr) print(maximumXOR(arr, N)) # this code is contributed by shivanisinghss2110
C# // C# program for the above approach using System; class GFG { // Recursive function to find all the // possible breaking of arrays into // subarrays and find the maximum // Bitwise XOR static int maxXORUtil(int[] arr, int N, int xrr, int orr) { // If the value of N is 0 if (N == 0) return xrr ^ orr; // Stores the result if the new // group is formed with the first // element as arr[i] int x = maxXORUtil(arr, N - 1, xrr ^ orr, arr[N - 1]); // Stores if the result if the // arr[i] is included in the // last group int y = maxXORUtil(arr, N - 1, xrr, orr | arr[N - 1]); // Returns the maximum of // x and y return Math.Max(x, y); } // Function to find the maximum possible // Bitwise XOR of all possible values of // the array after breaking the arrays // into subarrays static int maximumXOR(int[] arr, int N) { // Return the result return maxXORUtil(arr, N, 0, 0); } // Driver code static void Main() { int[] arr = { 1, 5, 7 }; int N = arr.Length; Console.Write(maximumXOR(arr, N)); } } // This code is contributed by sanjoy_62.
JavaScript <script> // Javascript program for the above approach // Recursive function to find all the // possible breaking of arrays into // subarrays and find the maximum // Bitwise XOR function maxXORUtil(arr,N,xrr,orr) { // If the value of N is 0 if (N == 0) return xrr ^ orr; // Stores the result if the new // group is formed with the first // element as arr[i] let x = maxXORUtil(arr, N - 1, xrr ^ orr, arr[N - 1]); // Stores if the result if the // arr[i] is included in the // last group let y = maxXORUtil(arr, N - 1, xrr, orr | arr[N - 1]); // Returns the maximum of // x and y return Math.max(x, y); } // Function to find the maximum possible // Bitwise XOR of all possible values of // the array after breaking the arrays // into subarrays function maximumXOR(arr,N) { // Return the result return maxXORUtil(arr, N, 0, 0); } // Driver code let arr=[1, 5, 7 ]; let N = arr.length; document.write(maximumXOR(arr, N)); // This code is contributed by unknown2108 </script>
Time Complexity: O(2N)
Auxiliary Space: O(1)
Efficient Approach: The above approach can be optimized by observing the relationship between the Bitwise XOR and Bitwise OR i.e., the value of Bitwise XOR of N elements is at most the value of Bitwise OR of N elements. Therefore, to find the maximum value, the idea is to split the group into only 1 group of the whole array.
Hence, print the value of Bitwise OR of the array elements arr[] as the resultant maximum value.
Below is the implementation of the above approach:
C++ // C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the bitwise OR of // array elements int MaxXOR(int arr[], int N) { // Stores the resultant maximum // value of Bitwise XOR int res = 0; // Traverse the array arr[] for (int i = 0; i < N; i++) { res |= arr[i]; } // Return the maximum value res return res; } // Driver Code int main() { int arr[] = { 1, 5, 7 }; int N = sizeof(arr) / sizeof(arr[0]); cout << MaxXOR(arr, N); return 0; }
Java // Java program for the above approach import java.lang.*; import java.util.*; class GFG{ // Function to find the bitwise OR of // array elements static int MaxXOR(int arr[], int N) { // Stores the resultant maximum // value of Bitwise XOR int res = 0; // Traverse the array arr[] for(int i = 0; i < N; i++) { res |= arr[i]; } // Return the maximum value res return res; } public static void main(String[] args) { int arr[] = { 1, 5, 7 }; int N = arr.length; System.out.println(MaxXOR(arr, N)); } } // This code is contributed by offbeat
Python3 # Python3 program for the above approach # Function to find the bitwise OR of # array elements def MaxXOR(arr, N): # Stores the resultant maximum # value of Bitwise XOR res = 0 # Traverse the array arr[] for i in range(N): res |= arr[i] # Return the maximum value res return res # Driver Code if __name__ == '__main__': arr = [ 1, 5, 7 ] N = len(arr) print (MaxXOR(arr, N)) # This code is contributed by mohit kumar 29
C# // C# program for the above approach using System; class GFG { // Function to find the bitwise OR of // array elements static int MaxXOR(int []arr, int N) { // Stores the resultant maximum // value of Bitwise XOR int res = 0; // Traverse the array arr[] for(int i = 0; i < N; i++) { res |= arr[i]; } // Return the maximum value res return res; } public static void Main(String[] args) { int []arr = { 1, 5, 7 }; int N = arr.Length; Console.Write(MaxXOR(arr, N)); } } // This code is contributed by shivanisinghss2110
JavaScript <script> // JavaScript program for the above approach // Function to find the bitwise OR of // array elements function MaxXOR(arr, N) { // Stores the resultant maximum // value of Bitwise XOR var res = 0; // Traverse the array arr[] for(var i = 0; i < N; i++) { res |= arr[i]; } // Return the maximum value res return res; } // Driver code var arr = [ 1, 5, 7 ]; var N = arr.length; document.write(MaxXOR(arr, N)); // This code is contributed by shivanisinghss2110 </script>
Time Complexity: O(N)
Auxiliary Space: O(1)
Similar Reads
Partition array into two subsets with minimum Bitwise XOR between their maximum and minimum
Given an array arr[] of size N, the task is to split the array into two subsets such that the Bitwise XOR between the maximum of the first subset and minimum of the second subset is minimum. Examples: Input: arr[] = {3, 1, 2, 6, 4} Output: 1 Explanation: Splitting the given array in two subsets {1,
5 min read
Split Array into maximum Subsets with same bitwise AND
Given an array arr[] of size N, the task is to find the maximum number of subsets the array can be split such that the bitwise AND of the subsets is the same. Examples: Input: N = 4, arr[] = {1, 5, 2, 8}Output: 2Explanation:1st subset -> {1, 8}; bitwise AND = 0 2nd subset -> {2, 5}; bitwise AN
10 min read
Find maximum product of Bitwise AND and Bitwise OR of K-size subarray
Given an array arr[] containing N integers and an integer K, the task is to find the maximum value of the product of Bitwise AND and Bitwise OR of all elements of a K-sized subarray. Example: Input: arr[] = {1, 2, 3, 4}, K = 2Output: 6Explanation: Bitwise AND and Bitwise XOR of all K-sized subarrays
9 min read
Split array into three continuous subarrays with negative, 0 and positive product respectively
Given an array arr[] size N such that each array element is either -1, 0, or 1, the task is to check if is it possible to split the array into 3 contiguous subarrays such that the product of the first, second and third subarrays is negative, 0 and positive respectively. Examples: Input: arr[] = {-1,
11 min read
Count pairs with bitwise XOR exceeding bitwise AND from a given array
Given an array, arr[] of size N, the task is to count the number of pairs from the given array such that the bitwise AND(&) of each pair is less than its bitwise XOR(^). Examples: Input: arr[] = {1, 2, 3, 4, 5} Output: 8Explanation: Pairs that satisfy the given conditions are: (1 & 2) < (
10 min read
Maximum sum of Bitwise XOR of elements with their respective positions in a permutation of size N
Given a positive integer N, the task for any permutation of size N having elements over the range [0, N - 1], is to calculate the sum of Bitwise XOR of all elements with their respective position. For Example: For the permutation {3, 4, 2, 1, 0}, sum = (0^3 + 1^4 + 2^2 + 3^1 + 4^0) = 2. Examples: In
7 min read
Find subsequences with maximum Bitwise AND and Bitwise OR
Given an array of n elements. The task is to print the maximum sum by selecting two subsequences of the array (not necessarily different) such that the sum of bitwise AND of all elements of the first subsequence and bitwise OR of all the elements of the second subsequence is maximum. Examples: Input
4 min read
Find all possible pairs with given Bitwise OR and Bitwise XOR values
Given two positive integers A and B representing Bitwise XOR and Bitwise OR of two positive integers, the task is to find all possible pairs (x, y) such that x ^ y is equal to A and x | y is equal to B. Examples: Input: A = 5, B = 7Output:2 73 66 37 2Explanation:7( XOR )2 = 5 and 7( OR )2 = 73( XOR
8 min read
Count ways to split array into three non-empty subarrays having equal Bitwise XOR values
Given an array arr[] consisting of N non-negative integers, the task is to count the number of ways to split the array into three different non-empty subarrays such that Bitwise XOR of each subarray is equal. Examples: Input: arr[] = {7, 0, 5, 2, 7} Output: 2Explanation: All possible ways are:{{7},
9 min read
Count of pairs with bitwise XOR value greater than its bitwise AND value
Given an array arr that contains N positive Integers. Find the count of all possible pairs whose bitwise XOR value is greater than bitwise AND value Examples: Input : arr[]={ 12, 4, 15}Output: 2Explanation: 12 ^ 4 = 8, 12 & 4 = 4. so 12 ^ 4 > 12 & 4 4 ^ 15 = 11, 4 & 15 = 4. so 4 ^ 15
4 min read