Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
    • Practice Coding Problems
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • DSA
  • Interview Questions on Array
  • Practice Array
  • MCQs on Array
  • Tutorial on Array
  • Types of Arrays
  • Array Operations
  • Subarrays, Subsequences, Subsets
  • Reverse Array
  • Static Vs Arrays
  • Array Vs Linked List
  • Array | Range Queries
  • Advantages & Disadvantages
Open In App
Next Article:
Sort an array according to count of set bits
Next article icon

Sort an array according to count of set bits

Last Updated : 10 Mar, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report
Try it on GfG Practice
redirect icon

Given an array of integers, sort the array (in descending order) according to count of set bits in binary representation of array elements. 

Note: For integers having same number of set bits in their binary representation, sort according to their position in the original array i.e., a stable sort.

Examples:

Input: arr[] = [5, 2, 3, 9, 4, 6, 7, 15, 32]
Output: 15 7 5 3 9 6 2 4 32
Explanation: The integers in their binary representation are:
15 -1111
7 -0111
5 -0101
3 -0011
9 -1001
6 -0110
2 -0010
4- -0100
32 -10000
Hence the non-increasing sorted order is: {15}, {7}, {5, 3, 9, 6}, {2, 4, 32}.

Input: arr[] = [1, 2, 3, 4, 5, 6]
Output: 3 5 6 1 2 4
Explanation: The integers in their binary representation are:
3 - 0011
5 - 0101
6 - 0110
1 - 0001
2 - 0010
4 - 0100
hence the non-increasing sorted order is {3, 5, 6}, {1, 2, 4}.

Table of Content

  • [Naive Approach] - Using Insertion Sort - O(n ^ 2) Time and O(n) Space
  • [Better Approach] - Using Inbuilt Sort Function - O(n * log n) Time and O(1) Space
  • [Expected Approach] - Using Counting Sort - O(n) Time and O(n) Space
  • [Alternate Approach] - Using Multimap - O(n * log n) Time and O(n) Space

[Naive Approach] - Using Insertion Sort - O(n ^ 2) Time and O(n) Space

The idea is to store the set-bit counts of all the integers in the auxiliary array and simultaneously sort both arrays according to the non-increasing order of auxiliary array.

C++
#include <bits/stdc++.h> using namespace std;  // Function to simultaneously sort both  // arrays using insertion sort void insertionSort(vector<int> &arr, vector<int> &bitCnt) {     int n = arr.size();      for (int i = 1; i < n; i++) {         int key1 = bitCnt[i];         int key2 = arr[i];         int j = i - 1;          while (j >= 0 && bitCnt[j] < key1) {             bitCnt[j + 1] = bitCnt[j];             arr[j + 1] = arr[j];             j = j - 1;         }         bitCnt[j + 1] = key1;         arr[j + 1] = key2;     } }  // Function to count set bits in an integer int countBits(int a) {     int count = 0;     while (a) {         if (a % 2 != 0)             count += 1;         a = a / 2;     }     return count; }  // Function to sort an array according to bit count void sortBySetBitCount(vector<int>& arr) {     int n = arr.size();      // Create an array and store      // count of set bits in it.     vector<int> bitCnt(n);     for (int i = 0; i < n; i++)         bitCnt[i] = countBits(arr[i]);          // sort the array      insertionSort(arr, bitCnt); }  int main() {     vector<int> arr = { 5, 2, 3, 9, 4, 6, 7, 15, 32 };     sortBySetBitCount(arr);     for (int i = 0; i < arr.size(); i++)         cout << arr[i] << " ";     return 0; } 
Java
// Function to simultaneously sort both  // arrays using insertion sort import java.util.*;  class GfG {      // Function to simultaneously sort both      // arrays using insertion sort     static void insertionSort(int[] arr, int[] bitCnt) {         int n = arr.length;                  for (int i = 1; i < n; i++) {             int key1 = bitCnt[i];             int key2 = arr[i];             int j = i - 1;                          while (j >= 0 && bitCnt[j] < key1) {                 bitCnt[j + 1] = bitCnt[j];                 arr[j + 1] = arr[j];                 j = j - 1;             }             bitCnt[j + 1] = key1;             arr[j + 1] = key2;         }     }          // Function to count set bits in an integer     static int countBits(int a) {         int count = 0;         while (a != 0) {             if (a % 2 != 0)                 count += 1;             a = a / 2;         }         return count;     }          // Function to sort an array according to bit count     static void sortBySetBitCount(int[] arr) {         int n = arr.length;                  // Create an array and store          // count of set bits in it.         int[] bitCnt = new int[n];         for (int i = 0; i < n; i++)             bitCnt[i] = countBits(arr[i]);                  // sort the array          insertionSort(arr, bitCnt);     }          public static void main(String[] args) {         int[] arr = {5, 2, 3, 9, 4, 6, 7, 15, 32};         sortBySetBitCount(arr);         for (int i = 0; i < arr.length; i++)             System.out.print(arr[i] + " ");     } } 
Python
# Function to simultaneously sort both  # arrays using insertion sort def insertionSort(arr, bitCnt):     n = len(arr)          for i in range(1, n):         key1 = bitCnt[i]         key2 = arr[i]         j = i - 1                  while j >= 0 and bitCnt[j] < key1:             bitCnt[j + 1] = bitCnt[j]             arr[j + 1] = arr[j]             j = j - 1         bitCnt[j + 1] = key1         arr[j + 1] = key2  # Function to count set bits in an integer def countBits(a):     count = 0     while a:         if a % 2 != 0:             count += 1         a = a // 2     return count  # Function to sort an array according to bit count def sortBySetBitCount(arr):     n = len(arr)          # Create an array and store      # count of set bits in it.     bitCnt = [0] * n     for i in range(n):         bitCnt[i] = countBits(arr[i])          # sort the array      insertionSort(arr, bitCnt)  if __name__ == "__main__":     arr = [5, 2, 3, 9, 4, 6, 7, 15, 32]     sortBySetBitCount(arr)     for i in range(len(arr)):         print(arr[i], end=" ") 
C#
// Function to simultaneously sort both  // arrays using insertion sort using System; using System.Collections.Generic;  class GfG {      // Function to simultaneously sort both      // arrays using insertion sort     static void insertionSort(int[] arr, int[] bitCnt) {         int n = arr.Length;                  for (int i = 1; i < n; i++) {             int key1 = bitCnt[i];             int key2 = arr[i];             int j = i - 1;                          while (j >= 0 && bitCnt[j] < key1) {                 bitCnt[j + 1] = bitCnt[j];                 arr[j + 1] = arr[j];                 j = j - 1;             }             bitCnt[j + 1] = key1;             arr[j + 1] = key2;         }     }          // Function to count set bits in an integer     static int countBits(int a) {         int count = 0;         while (a != 0) {             if (a % 2 != 0)                 count += 1;             a = a / 2;         }         return count;     }          // Function to sort an array according to bit count     static void sortBySetBitCount(int[] arr) {         int n = arr.Length;                  // Create an array and store          // count of set bits in it.         int[] bitCnt = new int[n];         for (int i = 0; i < n; i++)             bitCnt[i] = countBits(arr[i]);                  // sort the array          insertionSort(arr, bitCnt);     }          static void Main() {         int[] arr = {5, 2, 3, 9, 4, 6, 7, 15, 32};         sortBySetBitCount(arr);         for (int i = 0; i < arr.Length; i++)             Console.Write(arr[i] + " ");     } } 
JavaScript
// Function to simultaneously sort both  // arrays using insertion sort function insertionSort(arr, bitCnt) {     let n = arr.length;          for (let i = 1; i < n; i++) {         let key1 = bitCnt[i];         let key2 = arr[i];         let j = i - 1;                  while (j >= 0 && bitCnt[j] < key1) {             bitCnt[j + 1] = bitCnt[j];             arr[j + 1] = arr[j];             j = j - 1;         }         bitCnt[j + 1] = key1;         arr[j + 1] = key2;     } }  // Function to count set bits in an integer function countBits(a) {     let count = 0;     while (a) {         if (a % 2 !== 0)             count += 1;         a = Math.floor(a / 2);     }     return count; }  // Function to sort an array according to bit count function sortBySetBitCount(arr) {     let n = arr.length;          // Create an array and store      // count of set bits in it.     let bitCnt = new Array(n).fill(0);     for (let i = 0; i < n; i++)         bitCnt[i] = countBits(arr[i]);          // sort the array      insertionSort(arr, bitCnt); }  let arr = [5, 2, 3, 9, 4, 6, 7, 15, 32]; sortBySetBitCount(arr); for (let i = 0; i < arr.length; i++)     process.stdout.write(arr[i] + " "); 

Output
15 7 5 3 9 6 2 4 32 

[Better Approach] - Using Inbuilt Sort Function - O(n * log n) Time and O(1) Space

The idea is to use the inbuilt sort function and custom comparator to sort the array according to set-bit count.

C++
#include <bits/stdc++.h> using namespace std;  // Function to count set bits in an integer int countBits(int a) {     int count = 0;     while (a) {         if (a % 2 != 0)             count += 1;         a = a / 2;     }     return count; }  // custom comparator of std::sort bool cmp(int a, int b) {     int count1 = countBits(a);     int count2 = countBits(b);      // this takes care of the stability of sorting algorithm too     if (count1 <= count2)         return false;     return true; }  // Function to sort an array according to bit count void sortBySetBitCount(vector<int>& arr) {     stable_sort(arr.begin(), arr.end(), cmp); }  int main() {     vector<int> arr = { 5, 2, 3, 9, 4, 6, 7, 15, 32 };     sortBySetBitCount(arr);     for (int i = 0; i < arr.size(); i++)         cout << arr[i] << " ";     return 0; } 
Java
// Function to count set bits in an integer import java.util.*;  class GfG {      // Function to count set bits in an integer     static int countBits(int a) {         int count = 0;         while (a != 0) {             if (a % 2 != 0)                 count += 1;             a = a / 2;         }         return count;     }          // Function to sort an array according to bit count     // using stable sort     static int[] sortBySetBitCount(int[] arr) {         int n = arr.length;         Integer[] arrObj = new Integer[n];         for (int i = 0; i < n; i++) {             arrObj[i] = arr[i];         }         Arrays.sort(arrObj, new Comparator<Integer>() {             public int compare(Integer a, Integer b) {                 int c1 = countBits(a);                 int c2 = countBits(b);                 if(c1 == c2)                     return 0;                 return c1 < c2 ? 1 : -1;             }         });         int[] ans = new int[n];         for (int i = 0; i < n; i++) {             ans[i] = arrObj[i];         }         return ans;     }          public static void main(String[] args) {         int[] arr = {5, 2, 3, 9, 4, 6, 7, 15, 32};         int[] ans = sortBySetBitCount(arr);         for (int i = 0; i < ans.length; i++)             System.out.print(ans[i] + " ");     } } 
Python
# Function to count set bits in an integer def countBits(a):     count = 0     while a:         if a % 2 != 0:             count += 1         a //= 2     return count  # Function to sort an array according to bit count # using stable sort def sortBySetBitCount(arr):     arr.sort(key=lambda x: -countBits(x))     return arr  if __name__ == "__main__":     arr = [5, 2, 3, 9, 4, 6, 7, 15, 32]     sortBySetBitCount(arr)     for i in range(len(arr)):         print(arr[i], end=" ") 
C#
// Function to count set bits in an integer using System; using System.Linq;  class GfG {      // Function to count set bits in an integer     static int countBits(int a) {         int count = 0;         while (a != 0) {             if (a % 2 != 0)                 count += 1;             a = a / 2;         }         return count;     }      // Function to sort an array according to bit count     // using stable sort     static int[] sortBySetBitCount(int[] arr) {         int n = arr.Length;         var sorted = arr.Select((x, i) => new { Value = x, Index = i })                         .OrderByDescending(item => countBits(item.Value))                         .ThenBy(item => item.Index)                         .Select(item => item.Value)                         .ToArray();         return sorted;     }      static void Main() {         int[] arr = {5, 2, 3, 9, 4, 6, 7, 15, 32};         int[] ans = sortBySetBitCount(arr);         for (int i = 0; i < ans.Length; i++)             Console.Write(ans[i] + " ");     } } 
JavaScript
// Function to count set bits in an integer function countBits(a) {     let count = 0;     while (a) {         if (a % 2 !== 0)             count += 1;         a = Math.floor(a / 2);     }     return count; }  // Function to sort an array according to bit count // using stable sort function sortBySetBitCount(arr) {     arr.sort((a, b) => {         let c1 = countBits(a);         let c2 = countBits(b);         if (c1 === c2)             return 0;         return c1 < c2 ? 1 : -1;     });     return arr; }  let arr = [5, 2, 3, 9, 4, 6, 7, 15, 32]; sortBySetBitCount(arr); for (let i = 0; i < arr.length; i++)     process.stdout.write(arr[i] + " "); 

Output
15 7 5 3 9 6 2 4 32 

[Expected Approach] - Using Counting Sort - O(n) Time and O(n) Space

The idea is to use counting sort to arrange the elements in descending order of count of set-bits. For any integer, assuming the minimum and maximum set-bits can be 1 and 31 respectively, create an array count[][] of size 32, where each element count[i] stores the elements of given array with count of their set bits equal to i. After inserting all the elements, traverse count[][] in reverse order, and store the elements at each index in the given array.

Capture

C++
#include <bits/stdc++.h> using namespace std;  // Function to count set bits in an integer int countBits(int a) {     int count = 0;     while (a) {         if (a % 2 != 0)             count += 1;         a = a / 2;     }     return count; }  // Function to sort an array according to bit count void sortBySetBitCount(vector<int>& arr) {     int n = arr.size();      // Create a 2d array to map array elements     // to their corresponding set bit count     vector<vector<int>> count(32);      // insert elements in the 2d array     for (int i=0; i<n; i++) {         int setBit = countBits(arr[i]);         count[setBit].push_back(arr[i]);     }      // to track the index of sorted array     int j = 0;      // Traverse through all bit counts     for (int i = 31; i >= 0; i--) {          // Traverse through all elements          // of current bit count         for(int k = 0; k < count[i].size(); k++) {             arr[j++] = count[i][k];         }     } }  int main() {     vector<int> arr = { 5, 2, 3, 9, 4, 6, 7, 15, 32 };     sortBySetBitCount(arr);     for (int i = 0; i < arr.size(); i++)         cout << arr[i] << " ";     return 0; } 
Java
// Function to count set bits in an integer import java.util.*;  class GfG {      // Function to count set bits in an integer     static int countBits(int a) {         int count = 0;         while (a != 0) {             if (a % 2 != 0)                 count += 1;             a = a / 2;         }         return count;     }      // Function to sort an array according to bit count     static void sortBySetBitCount(int[] arr) {         int n = arr.length;                  // Create a 2d array to map array elements         // to their corresponding set bit count         ArrayList<ArrayList<Integer>> count = new ArrayList<>();         for (int i = 0; i < 32; i++) {             count.add(new ArrayList<>());         }                  // insert elements in the 2d array         for (int i = 0; i < n; i++) {             int setBit = countBits(arr[i]);             count.get(setBit).add(arr[i]);         }                  // to track the index of sorted array         int j = 0;                  // Traverse through all bit counts         for (int i = 31; i >= 0; i--) {             // Traverse through all elements              // of current bit count             ArrayList<Integer> curr = count.get(i);             for (int k = 0; k < curr.size(); k++) {                 arr[j++] = curr.get(k);             }         }     }          public static void main(String[] args) {         int[] arr = {5, 2, 3, 9, 4, 6, 7, 15, 32};         sortBySetBitCount(arr);         for (int i = 0; i < arr.length; i++)             System.out.print(arr[i] + " ");     } } 
Python
# Function to count set bits in an integer def countBits(a):     count = 0     while a:         if a % 2 != 0:             count += 1         a = a // 2     return count  # Function to sort an array according to bit count def sortBySetBitCount(arr):     n = len(arr)          # Create a 2d array to map array elements     # to their corresponding set bit count     count = [[] for _ in range(32)]          # insert elements in the 2d array     for i in range(n):         setBit = countBits(arr[i])         count[setBit].append(arr[i])          # to track the index of sorted array     j = 0          # Traverse through all bit counts     for i in range(31, -1, -1):         # Traverse through all elements          # of current bit count         for k in range(len(count[i])):             arr[j] = count[i][k]             j += 1  # Driver Code if __name__ == "__main__":     arr = [5, 2, 3, 9, 4, 6, 7, 15, 32]     sortBySetBitCount(arr)     for i in range(len(arr)):         print(arr[i], end=" ") 
C#
// Function to count set bits in an integer using System; using System.Collections.Generic;  class GfG {      // Function to count set bits in an integer     static int countBits(int a) {         int count = 0;         while (a != 0) {             if (a % 2 != 0)                 count += 1;             a = a / 2;         }         return count;     }          // Function to sort an array according to bit count     static void sortBySetBitCount(int[] arr) {         int n = arr.Length;                  // Create a 2d array to map array elements         // to their corresponding set bit count         List<List<int>> count = new List<List<int>>();         for (int i = 0; i < 32; i++) {             count.Add(new List<int>());         }                  // insert elements in the 2d array         for (int i = 0; i < n; i++) {             int setBit = countBits(arr[i]);             count[setBit].Add(arr[i]);         }                  // to track the index of sorted array         int j = 0;                  // Traverse through all bit counts         for (int i = 31; i >= 0; i--) {             // Traverse through all elements              // of current bit count             for (int k = 0; k < count[i].Count; k++) {                 arr[j++] = count[i][k];             }         }     }          static void Main() {         int[] arr = {5, 2, 3, 9, 4, 6, 7, 15, 32};         sortBySetBitCount(arr);         for (int i = 0; i < arr.Length; i++)             Console.Write(arr[i] + " ");     } } 
JavaScript
// Function to count set bits in an integer function countBits(a) {     let count = 0;     while (a) {         if (a % 2 !== 0)             count += 1;         a = Math.floor(a / 2);     }     return count; }   // Function to sort an array according to bit count function sortBySetBitCount(arr) {     let n = arr.length;          // Create a 2d array to map array elements     // to their corresponding set bit count     let count = [];     for (let i = 0; i < 32; i++) {         count.push([]);     }          // insert elements in the 2d array     for (let i = 0; i < n; i++) {         let setBit = countBits(arr[i]);         count[setBit].push(arr[i]);     }          // to track the index of sorted array     let j = 0;          // Traverse through all bit counts     for (let i = 31; i >= 0; i--) {         // Traverse through all elements          // of current bit count         for (let k = 0; k < count[i].length; k++) {             arr[j++] = count[i][k];         }     } }   let arr = [5, 2, 3, 9, 4, 6, 7, 15, 32]; sortBySetBitCount(arr); for (let i = 0; i < arr.length; i++)     process.stdout.write(arr[i] + " "); 

Output
15 7 5 3 9 6 2 4 32 

[Alternate Approach] - Using Multimap - O(n * log n) Time and O(n) Space

The idea is store the elements corresponding to negative (to ensure elements are sorted in descending order) of their count of set-bits in a multimap.

  • Create a MultiMap whose key values will be the negative of the number of set-bits of the element.
  • Traverse the array and do following for each element:
    • Count the number set-bits of this element. Let it be 'setBitCount'
    • count.insert({(-1) * setBitCount, element})
  • Traverse 'count' and print the second elements.
C++
#include <bits/stdc++.h> using namespace std;  // Function to count set bits in an integer int countBits(int a) {     int count = 0;     while (a) {         if (a % 2 != 0)             count += 1;         a = a / 2;     }     return count; }  // Function to sort an array according to bit count void sortBySetBitCount(vector<int>& arr) {     int n = arr.size();      // to map the elements to their     // corresponding set bit count     multimap<int, int> count;        // Iterate over all values and      // insert into multimap     for( int i = 0 ; i < n ; i++ ) {         count.insert({(-1) * countBits(arr[i]), arr[i]});     }          int j = 0;        // Iterate over all values and     // insert into the array     for(auto i: count) {         arr[j++] = i.second;     } }  int main() {     vector<int> arr = { 5, 2, 3, 9, 4, 6, 7, 15, 32 };     sortBySetBitCount(arr);     for (int i = 0; i < arr.size(); i++)         cout << arr[i] << " ";     return 0; } 
Java
// Function to count set bits in an integer import java.util.*;  class Pair {     int val;     int idx;          Pair(int val, int idx) {         this.val = val;         this.idx = idx;     } }  class GfG {      // Function to count set bits in an integer     static int countBits(int a) {         int count = 0;         while (a != 0) {             if (a % 2 != 0)                 count += 1;             a = a / 2;         }         return count;     }      // Function to sort an array according to bit count     static int[] sortBySetBitCount(int[] arr) {         int n = arr.length;         Pair[] pairs = new Pair[n];         for (int i = 0; i < n; i++) {             pairs[i] = new Pair(arr[i], i);         }                  Arrays.sort(pairs, new Comparator<Pair>() {             public int compare(Pair p1, Pair p2) {                 int c1 = countBits(p1.val);                 int c2 = countBits(p2.val);                 if (c1 == c2)                     return Integer.compare(p1.idx, p2.idx);                 return Integer.compare(c2, c1);             }         });                  int[] ans = new int[n];         for (int i = 0; i < n; i++) {             ans[i] = pairs[i].val;         }         return ans;     }          public static void main(String[] args) {         int[] arr = {5, 2, 3, 9, 4, 6, 7, 15, 32};         int[] ans = sortBySetBitCount(arr);         for (int i = 0; i < ans.length; i++)             System.out.print(ans[i] + " ");     } } 
Python
# Function to count set bits in an integer def countBits(a):     count = 0     while a:         if a % 2 != 0:             count += 1         a //= 2     return count  # Function to sort an array according to bit count def sortBySetBitCount(arr):     n = len(arr)          # Create an array of (index, value) pairs     paired = list(enumerate(arr))          # Stable sort: first by descending countBits, then by original index     paired.sort(key=lambda x: (-countBits(x[1]), x[0]))          ans = [x[1] for x in paired]     return ans  if __name__ == "__main__":     arr = [5, 2, 3, 9, 4, 6, 7, 15, 32]     ans = sortBySetBitCount(arr)     for i in range(len(ans)):         print(ans[i], end=" ") 
C#
// Function to count set bits in an integer using System; using System.Linq; using System.Collections.Generic;  class GfG {      // Function to count set bits in an integer     static int countBits(int a) {         int count = 0;         while (a != 0) {             if (a % 2 != 0)                 count += 1;             a = a / 2;         }         return count;     }          // Function to sort an array according to bit count     static int[] sortBySetBitCount(int[] arr) {         int n = arr.Length;         var paired = arr.Select((val, idx) => new { val, idx });         var sorted = paired.OrderByDescending(x => countBits(x.val))                            .ThenBy(x => x.idx)                            .Select(x => x.val)                            .ToArray();         return sorted;     }          static void Main() {         int[] arr = {5, 2, 3, 9, 4, 6, 7, 15, 32};         int[] ans = sortBySetBitCount(arr);         for (int i = 0; i < ans.Length; i++)             Console.Write(ans[i] + " ");     } } 
JavaScript
// Function to count set bits in an integer function countBits(a) {     let count = 0;     while (a) {         if (a % 2 !== 0)             count += 1;         a = Math.floor(a / 2);     }     return count; }   // Function to sort an array according to bit count function sortBySetBitCount(arr) {     let n = arr.length;          // Create an array of pairs [index, value]     let paired = arr.map((val, idx) => [idx, val]);          // Stable sort: first by descending countBits, then by original index     paired.sort((a, b) => {         let c1 = countBits(a[1]);         let c2 = countBits(b[1]);         if (c1 === c2)             return a[0] - b[0];         return c2 - c1;     });          let ans = paired.map(x => x[1]);     return ans; }   let arr = [5, 2, 3, 9, 4, 6, 7, 15, 32]; let ans = sortBySetBitCount(arr); for (let i = 0; i < ans.length; i++)     process.stdout.write(ans[i] + " "); 

Output
15 7 5 3 9 6 2 4 32 

Next Article
Sort an array according to count of set bits

K

kartik
Improve
Article Tags :
  • Sorting
  • DSA
  • Arrays
  • Deutsche Bank
Practice Tags :
  • Arrays
  • Sorting

Similar Reads

    Sorting Algorithms
    A Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
    3 min read
    Introduction to Sorting Techniques – Data Structure and Algorithm Tutorials
    Sorting refers to rearrangement of a given array or list of elements according to a comparison operator on the elements. The comparison operator is used to decide the new order of elements in the respective data structure. Why Sorting Algorithms are ImportantThe sorting algorithm is important in Com
    3 min read

    Most Common Sorting Algorithms

    Selection Sort
    Selection Sort is a comparison-based sorting algorithm. It sorts an array by repeatedly selecting the smallest (or largest) element from the unsorted portion and swapping it with the first unsorted element. This process continues until the entire array is sorted.First we find the smallest element an
    8 min read
    Bubble Sort Algorithm
    Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir
    8 min read
    Insertion Sort Algorithm
    Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T
    9 min read
    Merge Sort - Data Structure and Algorithms Tutorials
    Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge
    14 min read
    Quick Sort
    QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s
    12 min read
    Heap Sort - Data Structures and Algorithms Tutorials
    Heap sort is a comparison-based sorting technique based on Binary Heap Data Structure. It can be seen as an optimization over selection sort where we first find the max (or min) element and swap it with the last (or first). We repeat the same process for the remaining elements. In Heap Sort, we use
    14 min read
    Counting Sort - Data Structures and Algorithms Tutorials
    Counting Sort is a non-comparison-based sorting algorithm. It is particularly efficient when the range of input values is small compared to the number of elements to be sorted. The basic idea behind Counting Sort is to count the frequency of each distinct element in the input array and use that info
    9 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences