Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • DSA
  • Interview Questions on Array
  • Practice Array
  • MCQs on Array
  • Tutorial on Array
  • Types of Arrays
  • Array Operations
  • Subarrays, Subsequences, Subsets
  • Reverse Array
  • Static Vs Arrays
  • Array Vs Linked List
  • Array | Range Queries
  • Advantages & Disadvantages
Open In App
Next Article:
Smallest subarray with sum greater than a given value
Next article icon

Smallest subarray of size greater than K with sum greater than a given value

Last Updated : 19 Jul, 2023
Comments
Improve
Suggest changes
Like Article
Like
Report

Given an array, arr[] of size N, two positive integers K and S, the task is to find the length of the smallest subarray of size greater than K, whose sum is greater than S.

Examples: 

Input: arr[] = {1, 2, 3, 4, 5}, K = 1, S = 8
Output: 2
Explanation: 
Smallest subarray with sum greater than S(=8) is {4, 5}
Therefore, the required output is 2.

Input: arr[] = {1, 3, 5, 1, 8, 2, 4}, K= 2, S= 13
Output: 3

 

Naive Approach

The idea is to find all subarrays and in that choose those subarrays whose sum is greater than S and whose length is greater than K. After that from those subarrays, choose that subarray whose length is minimum. Then print the length of that subarray.

Steps that were to follow the above approach:

  • Make a variable “ans” and initialize it with the maximum value
  • After that run two nested loops to find all subarrays
  • While finding all subarray calculate their size and sum of all elements of that subarray
  • If the sum of all elements is greater than S and its size is greater than K, then update answer with minimum of answer and length of the subarray

Below is the code to implement the above approach:

C++




// C++ program to implement the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the length of the smallest subarray of
// size > K with sum greater than S
int smallestSubarray(int K, int S, int arr[], int N)
{
   //To store answer
   int ans=INT_MAX;
   
  //Traverse the array
   for(int i=0;i<N;i++){
       //To store size of subarray
       int size=0;
       //To store sum of all elements of subarray
       int sum=0;
       for(int j=i;j<N;j++){
           size++;
           sum+=arr[j];
          
           //when size of subarray is greater than k and sum of all element
           //is greater than S then if size is less than previously stored answer
           //then update answer with size
           if(size>K && sum>S){
               if(size<ans){ans=size;}
           }
       }
   }
   return ans;
}
 
// Driver Code
int main()
{
    int arr[] = { 1, 2, 3, 4, 5 };
    int K = 1, S = 8;
    int N = sizeof(arr) / sizeof(arr[0]);
    cout << smallestSubarray(K, S, arr, N);
}
 
 

Java




import java.util.*;
 
public class Main
{
 
  // Function to find the length of the smallest subarray of
  // size > K with sum greater than S
  static int smallestSubarray(int K, int S, int[] arr, int N)
  {
 
    // To store answer
    int ans = Integer.MAX_VALUE;
 
    // Traverse the array
    for (int i = 0; i < N; i++) {
      // To store size of subarray
      int size = 0;
      // To store sum of all elements of subarray
      int sum = 0;
      for (int j = i; j < N; j++) {
        size++;
        sum += arr[j];
 
        // when size of subarray is greater than k and sum of all element
        // is greater than S then if size is less than previously stored answer
        // then update answer with size
        if (size > K && sum > S) {
          if (size < ans) {
            ans = size;
          }
        }
      }
    }
    return ans;
  }
 
  // Driver Code
  public static void main(String[] args) {
    int[] arr = { 1, 2, 3, 4, 5 };
    int K = 1, S = 8;
    int N = arr.length;
    System.out.println(smallestSubarray(K, S, arr, N));
  }
}
 
 

Python3




# Function to find the length of the smallest subarray of
# size > K with sum greater than S
def smallestSubarray(K, S, arr, N):
   
    # To store answer
    ans = float('inf')
 
    # Traverse the array
    for i in range(N):
       
        # To store size of subarray
        size = 0
         
        # To store sum of all elements of subarray
        sum = 0
        for j in range(i, N):
            size += 1
            sum += arr[j]
 
            # when size of subarray is greater than k and sum of all element
            # is greater than S then if size is less than previously stored answer
            # then update answer with size
            if size > K and sum > S:
                if size < ans:
                    ans = size
 
    return ans
 
# Driver Code
arr = [1, 2, 3, 4, 5]
K = 1
S = 8
N = len(arr)
print(smallestSubarray(K, S, arr, N))
 
 

C#




// C# program to implement the above approach
using System;
 
class GFG {
    // Function to find the length of the smallest subarray
    // of size > K with sum greater than S
    static int SmallestSubarray(int K, int S, int[] arr,
                                int N)
    {
        // To store the answer
        int ans = int.MaxValue;
 
        // Traverse the array
        for (int i = 0; i < N; i++) {
            // To store the size of the subarray
            int size = 0;
            // To store the sum of all elements of the
            // subarray
            int sum = 0;
            for (int j = i; j < N; j++) {
                size++;
                sum += arr[j];
 
                // When the size of the subarray is greater
                // than K and the sum of all elements is
                // greater than S, then if the size is less
                // than the previously stored answer update
                // the answer with the size
                if (size > K && sum > S) {
                    if (size < ans) {
                        ans = size;
                    }
                }
            }
        }
        return ans;
    }
 
    // Driver Code
    public static void Main(string[] args)
    {
        int[] arr = { 1, 2, 3, 4, 5 };
        int K = 1, S = 8;
        int N = arr.Length;
        Console.WriteLine(SmallestSubarray(K, S, arr, N));
    }
}
 
// This code is contributed by shivamgupta0987654321
 
 

Javascript




// Function to find the length of the smallest subarray of
// size > K with sum greater than S
function smallestSubarray(K, S, arr, N) {
  // To store answer
  let ans = Infinity;
 
  // Traverse the array
  for (let i = 0; i < N; i++) {
    // To store size of subarray
    let size = 0;
 
    // To store sum of all elements of subarray
    let sum = 0;
    for (let j = i; j < N; j++) {
      size += 1;
      sum += arr[j];
 
      // when size of subarray is greater than k and sum of all element
      // is greater than S then if size is less than previously stored answer
      // then update answer with size
      if (size > K && sum > S) {
        if (size < ans) {
          ans = size;
        }
      }
    }
  }
  return ans;
}
 
// Driver Code
let arr = [1, 2, 3, 4, 5];
let K = 1;
let S = 8;
let N = arr.length;
console.log(smallestSubarray(K, S, arr, N));
 
 

Output-

2

Time Complexity: O(N2), because of two nested for loops
Auxiliary Space:O(1) , because no extra space has been used

 Approach: The problem can be solved using Sliding Window Technique. Follow the steps below to solve the problem:

  1. Initialize two variables say, i = 0 and j = 0 both pointing to the start of array i.e index 0.
  2. Initialize a variable sum to store the sum of the subArray currently being processed.
  3. Traverse the array, arr[] and by incrementing j and adding arr[j]
  4. Take our the window length or the length of the current subArray which is given by j-i+1 (+1 because the indexes start from zero) .
  5. Firstly, check if the size of the current subArray i.e winLen  here is greater than K. if this is not the case increment the j value and continue the loop.
  6. Else , we get that the size of the current subArray is greater than K, now we have to check if we meet the second condition i.e sum of the current Subarray is greater than S.
  7. If this is the case, we update minLength variable which stores the minimum length of the subArray satisfying the above conditions.
  8. At this time , we check if the size of the subArray can be reduced (by incrementing i )  such that it still is greater than K and sum is also greater than S. We constantly remove the ith element of the array from the sum to reduce the subArray size in the While loop and then increment j such that we move to the next element in the array .the 
  9. Finally, print the minimum length of required subarray obtained that satisfies the conditions.

Below is the implementation of the above approach:
 

C++




// C++ program to implement the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the length of the smallest subarray of
// size > K with sum greater than S
int smallestSubarray(int K, int S, int arr[], int N)
{
    // Store the first index of the current subarray
    int start = 0;
    // Store the last index of the current subarray
    int end = 0;
    // Store the sum of the current subarray
    int currSum = arr[0];
    // Store the length of the smallest subarray
    int res = INT_MAX;
 
    while (end < N - 1) {
 
        // If sum of the current subarray <= S or length of
        // current subarray <= K
        if (currSum <= S || (end - start + 1) <= K) {
            // Increase the subarray sum and size
            currSum += arr[++end];
        }
        else {
 
            // Update to store the minimum size of subarray
            // obtained
            res = min(res, end - start + 1);
            // Decrement current subarray size by removing
            // first element
            currSum -= arr[start++];
        }
    }
 
    // Check if it is possible to reduce the length of the
    // current window
    while (start < N) {
        if (currSum > S && (end - start + 1) > K)
            res = min(res, (end - start + 1));
        currSum -= arr[start++];
    }
    return res;
}
 
// Driver Code
int main()
{
    int arr[] = { 1, 2, 3, 4, 5 };
    int K = 1, S = 8;
    int N = sizeof(arr) / sizeof(arr[0]);
    cout << smallestSubarray(K, S, arr, N);
}
 
// This code is contributed by Sania Kumari Gupta
 
 

C




// C program to implement the above approach
#include <limits.h>
#include <stdio.h>
 
// Find minimum between two numbers.
int min(int num1, int num2)
{
    return (num1 > num2) ? num2 : num1;
}
 
// Function to find the length of the smallest subarray of
// size > K with sum greater than S
int smallestSubarray(int K, int S, int arr[], int N)
{
    // Store the first index of the current subarray
    int start = 0;
    // Store the last index of the current subarray
    int end = 0;
    // Store the sum of the current subarray
    int currSum = arr[0];
    // Store the length of the smallest subarray
    int res = INT_MAX;
 
    while (end < N - 1) {
 
        // If sum of the current subarray <= S or length of
        // current subarray <= K
        if (currSum <= S || (end - start + 1) <= K) {
            // Increase the subarray sum and size
            currSum += arr[++end];
        }
        else {
 
            // Update to store the minimum size of subarray
            // obtained
            res = min(res, end - start + 1);
            // Decrement current subarray size by removing
            // first element
            currSum -= arr[start++];
        }
    }
 
    // Check if it is possible to reduce the length of the
    // current window
    while (start < N) {
        if (currSum > S && (end - start + 1) > K)
            res = min(res, (end - start + 1));
        currSum -= arr[start++];
    }
    return res;
}
 
// Driver Code
int main()
{
    int arr[] = { 1, 2, 3, 4, 5 };
    int K = 1, S = 8;
    int N = sizeof(arr) / sizeof(arr[0]);
    printf("%d", smallestSubarray(K, S, arr, N));
}
 
// This code is contributed by Sania Kumari Gupta
 
 

Java




// Java program to implement
// the above approach
import java.io.*;
 
class GFG{
 
// Function to find the length of the
// smallest subarray of size > K with
// sum greater than S
public static int smallestSubarray(int k, int s,
                                   int[] array, int N)
{
     
        int i=0;
        int j=0;
        int minLen = Integer.MAX_VALUE;
        int sum = 0;
 
        while(j < N)
        {
            sum += array[j];
            int winLen = j-i+1;
            if(winLen <= k)
                j++;
            else{
                if(sum > s)
                {
                    minLen = Math.min(minLen,winLen);
                    while(sum > s)
                    {
                        sum -= array[i];
                        i++;
                    }
                    j++;
                }
            }
        }
        return minLen;
}
 
// Driver Code
public static void main(String[] args)
{
    int[] arr = { 1, 2, 3, 4, 5 };
    int K = 1, S = 8;
    int N = arr.length;
     
    System.out.print(smallestSubarray(K, S, arr, N));
}
}
 
// This code is contributed by akhilsaini
 
 

Python3




# Python3 program to implement
# the above approach
import sys
 
# Function to find the length of the
# smallest subarray of size > K with
# sum greater than S
def smallestSubarray(K, S, arr, N):
   
  # Store the first index of
  # the current subarray
  start = 0
 
  # Store the last index of
  # the current subarray
  end = 0
 
  # Store the sum of the
  # current subarray
  currSum = arr[0]
 
  # Store the length of
  # the smallest subarray
  res = sys.maxsize
 
  while end < N - 1:
 
      # If sum of the current subarray <= S
      # or length of current subarray <= K
      if ((currSum <= S) or
         ((end - start + 1) <= K)):
           
          # Increase the subarray
          # sum and size
          end = end + 1;
          currSum += arr[end]
 
      # Otherwise
      else:
 
          # Update to store the minimum
          # size of subarray obtained
          res = min(res, end - start + 1)
 
          # Decrement current subarray
          # size by removing first element
          currSum -= arr[start]
          start = start + 1
 
  # Check if it is possible to reduce
  # the length of the current window
  while start < N:
      if ((currSum > S) and
         ((end - start + 1) > K)):
          res = min(res, (end - start + 1))
       
      currSum -= arr[start]
      start = start + 1
 
  return res;
 
# Driver Code
if __name__ == "__main__":
     
  arr = [ 1, 2, 3, 4, 5 ]
  K = 1
  S = 8
  N = len(arr)
   
  print(smallestSubarray(K, S, arr, N))
 
# This code is contributed by akhilsaini
 
 

C#




// C# program to implement
// the above approach
using System;
 
class GFG{
 
// Function to find the length of the
// smallest subarray of size > K with
// sum greater than S
static int smallestSubarray(int K, int S,
                            int[] arr, int N)
{
     
    // Store the first index of
    // the current subarray
    int start = 0;
 
    // Store the last index of
    // the current subarray
    int end = 0;
 
    // Store the sum of the
    // current subarray
    int currSum = arr[0];
 
    // Store the length of
    // the smallest subarray
    int res = int.MaxValue;
 
    while (end < N - 1)
    {
         
        // If sum of the current subarray <= S
        // or length of current subarray <= K
        if (currSum <= S ||
           (end - start + 1) <= K)
        {
             
            // Increase the subarray
            // sum and size
            currSum += arr[++end];
        }
 
        // Otherwise
        else
        {
 
            // Update to store the minimum
            // size of subarray obtained
            res = Math.Min(res, end - start + 1);
 
            // Decrement current subarray
            // size by removing first element
            currSum -= arr[start++];
        }
    }
 
    // Check if it is possible to reduce
    // the length of the current window
    while (start < N)
    {
        if (currSum > S && (end - start + 1) > K)
            res = Math.Min(res, (end - start + 1));
 
        currSum -= arr[start++];
    }
    return res;
}
 
// Driver Code
static public void Main()
{
    int[] arr = { 1, 2, 3, 4, 5 };
    int K = 1, S = 8;
    int N = arr.Length;
     
    Console.Write(smallestSubarray(K, S, arr, N));
}
}
 
// This code is contributed by akhilsaini
 
 

Javascript




<script>
// JavaScript program to implement
// the above approach
 
// Function to find the length of the
// smallest subarray of size > K with
// sum greater than S
function smallestSubarray(K, S, arr, N)
{
 
    // Store the first index of
    // the current subarray
    let start = 0;
 
    // Store the last index of
    // the current subarray
    let end = 0;
 
    // Store the sum of the
    // current subarray
    let currSum = arr[0];
 
    // Store the length of
    // the smallest subarray
    let res = Number.MAX_SAFE_INTEGER;
    while (end < N - 1)
    {
 
        // If sum of the current subarray <= S
        // or length of current subarray <= K
        if (currSum <= S
            || (end - start + 1) <= K)
        {
         
            // Increase the subarray
            // sum and size
            currSum += arr[++end];
        }
 
        // Otherwise
        else {
 
            // Update to store the minimum
            // size of subarray obtained
            res = Math.min(res, end - start + 1);
 
            // Decrement current subarray
            // size by removing first element
            currSum -= arr[start++];
        }
    }
 
    // Check if it is possible to reduce
    // the length of the current window
    while (start < N)
    {
        if (currSum > S
            && (end - start + 1) > K)
            res = Math.min(res, (end - start + 1));
 
        currSum -= arr[start++];
    }
    return res;
}
 
// Driver Code
    let arr = [ 1, 2, 3, 4, 5 ];
    let K = 1, S = 8;
    let N = arr.length;
    document.write(smallestSubarray(K, S, arr, N));
 
// This code is contributed by Surbhi tyagi.
</script>
 
 

 
 

Output
2  

Time Complexity: O(N)
Auxiliary Space:O(1) 



Next Article
Smallest subarray with sum greater than a given value

K

kholiyagaurav121
Improve
Article Tags :
  • Arrays
  • DSA
  • Mathematical
  • Misc
  • Searching
  • sliding-window
  • subarray
  • subarray-sum
Practice Tags :
  • Arrays
  • Mathematical
  • Misc
  • Searching
  • sliding-window

Similar Reads

  • Length of Smallest subarray in range 1 to N with sum greater than a given value
    Given two numbers N and S, the task is to find the length of smallest subarray in range (1, N) such that the sum of those chosen numbers is greater than S. Examples: Input: N = 5, S = 11 Output: 3 Explanation: Smallest subarray with sum > 11 = {5, 4, 3} Input: N = 4, S = 7 Output: 3 Explanation:
    9 min read
  • Smallest subarray with sum greater than a given value
    Given an array arr[] of integers and a number x, the task is to find the smallest subarray with a sum strictly greater than x. Examples: Input: x = 51, arr[] = [1, 4, 45, 6, 0, 19]Output: 3Explanation: Minimum length subarray is [4, 45, 6] Input: x = 100, arr[] = [1, 10, 5, 2, 7]Output: 0Explanation
    15+ min read
  • Smallest subarray with sum greater than or equal to K
    Given an array A[] consisting of N integers and an integer K, the task is to find the length of the smallest subarray with sum greater than or equal to K. If no such subarray exists, print -1. Examples: Input: A[] = {2, -1, 2}, K = 3 Output: 3 Explanation: Sum of the given array is 3. Hence, the sma
    15+ min read
  • Smallest subarray from a given Array with sum greater than or equal to K | Set 2
    Given an array A[] consisting of N positive integers and an integer K, the task is to find the length of the smallest subarray with a sum greater than or equal to K. If no such subarray exists, print -1. Examples: Input: arr[] = {3, 1, 7, 1, 2}, K = 11Output: 3Explanation:The smallest subarray with
    15+ min read
  • Smallest subarray such that all elements are greater than K
    Given an array of N integers and a number K, the task is to find the length of the smallest subarray in which all the elements are greater than K. If there is no such subarray possible, then print -1. Examples: Input: a[] = {3, 4, 5, 6, 7, 2, 10, 11}, K = 5 Output: 1 The subarray is {10} Input: a[]
    4 min read
  • Length of the smallest subarray with maximum possible sum
    Given an array arr[] consisting of N non-negative integers, the task is to find the minimum length of the subarray whose sum is maximum. Example: Input: arr[] = {0, 2, 0, 0, 12, 0, 0, 0}Output: 4Explanation: The sum of the subarray {2, 0, 0, 12} = 2 + 0 + 0 + 12 = 14, which is maximum sum possible a
    6 min read
  • Smallest Subarray with Sum K from an Array
    Given an array arr[] consisting of N integers, the task is to find the length of the Smallest subarray with a sum equal to K. Examples: Input: arr[] = {2, 4, 6, 10, 2, 1}, K = 12 Output: 2 Explanation: All possible subarrays with sum 12 are {2, 4, 6} and {10, 2}. Input: arr[] = {-8, -8, -3, 8}, K =
    10 min read
  • Count the subarray with sum strictly greater than the sum of remaining elements
    Given an array arr[] of N positive integers, the task is to count all the subarrays where the sum of subarray elements is strictly greater than the sum of remaining elements. Examples: Input: arr[] = {1, 2, 3, 4, 5} Output: 6 Explanation: Subarrays are: {1, 2, 3, 4} - sum of subarray = 10, sum of re
    12 min read
  • Number of subarrays with at-least K size and elements not greater than M
    Given an array of N elements, K is the minimum size of the sub-array, and M is the limit of every element in the sub-array, the task is to count the number of sub-arrays with a minimum size of K and all the elements are lesser than or equal to M. Examples: Input: arr[] = {-5, 0, -10}, K = 1, M = 15O
    7 min read
  • Subarray of size k with given sum
    Given an array arr[], an integer K and a Sum. The task is to check if there exists any subarray with K elements whose sum is equal to the given sum. If any of the subarray with size K has the sum equal to the given sum then print YES otherwise print NO. Examples: Input: arr[] = {1, 4, 2, 10, 2, 3, 1
    10 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences