// C program for range minimum query // using segment tree #include <stdio.h> #include <math.h> #include <limits.h> #include <stdlib.h> // A utility function to get minimum of two numbers int minVal(int x, int y) { return (x < y)? x: y; } // A utility function to get the // middle index from corner indexes. int getMid(int s, int e) { return s + (e -s)/2; } // A recursive function to get the // minimum value in a given range of array // st --> Pointer to segment tree // index --> Index of current node in the tree // ss & se --> Starting and ending indexes // qs & qe --> Starting and ending indexes of query range int RMQUtil(int *st, int ss, int se, int qs, int qe, int index) { // If segment of this node is a part of given range // then return the min of the segment if (qs <= ss && qe >= se) return st[index]; // If segment of this node if outside the range if (se < qs || ss > qe) return INT_MAX; // If a part of this segment // overlaps with the given range int mid = getMid(ss, se); return minVal(RMQUtil(st, ss, mid, qs, qe, 2*index+1), RMQUtil(st, mid+1, se, qs, qe, 2*index+2)); } // Return minimum of elements in range // from index qs to qe int RMQ(int *st, int n, int qs, int qe) { // Check for erroneous input values if (qs < 0 || qe > n-1 || qs > qe) { printf("Invalid Input"); return -1; } return RMQUtil(st, 0, n-1, qs, qe, 0); } // A recursive function that constructs // Segment Tree for array[ss..se]. int constructSTUtil(int arr[], int ss, int se, int *st, int si) { // If there is one element in array, // store it in current node of // segment tree and return if (ss == se) { st[si] = arr[ss]; return arr[ss]; } // If there are more than one elements, // then recur for left and right subtrees // and store the minimum of two values in this node int mid = getMid(ss, se); st[si] = minVal(constructSTUtil(arr, ss, mid, st, si*2+1), constructSTUtil(arr, mid+1, se, st, si*2+2)); return st[si]; } // Function to construct segment tree int *constructST(int arr[], int n) { //Height of segment tree int x = (int)(ceil(log2(n))); // Maximum size of segment tree int max_size = 2*(int)pow(2, x) - 1; int *st = (int*)malloc(max_size * sizeof(int)); // Fill the allocated memory st constructSTUtil(arr, 0, n-1, st, 0); // Return the constructed segment tree return st; } int main() { int arr[] = {1, 3, 2, 7, 9, 11}; int n = sizeof(arr)/sizeof(arr[0]); // Build segment tree from given array int *st = constructST(arr, n); // Starting index of query range int qs = 1; // Ending index of query range int qe = 5; // Print minimum value in arr[qs..qe] printf("Minimum of values in range [%d, %d] is = %d\n", qs, qe, RMQ(st, n, qs, qe)); return 0; }