RNA – Definition, Structure, Types and Functions
Last Updated : 12 Jan, 2024
RNA is a ribonucleic acid that helps in the synthesis of proteins in our body. This nucleic acid is responsible for the production of new cells in the human body. It is usually obtained from the DNA molecule. RNA resembles the same that of DNA, the only difference being that it has a single strand unlike the DNA which has two strands and it consists of only a single ribose sugar molecule in it. Hence the name Ribonucleic acid. RNA is also referred to as an enzyme as it helps in the process of chemical reactions in the body.
Central Dogma
Together, RNA, short for ribonucleic acid, and DNA, short for deoxyribonucleic acid, make up the nucleic acids, one of the three or four classes of major “macromolecules” considered crucial for life. The others are proteins and lipids. Many scientists also place carbohydrates in this group. Macromolecules are very large molecules, often consisting of repeating subunits. RNA and DNA are made up of subunits called nucleotides.
The two nucleic acids team up to create proteins. The process of creating proteins using the genetic information in nucleic acids is so important to life that biologists call it “the central dogma” of molecular biology. The dogma, which describes the flow of genetic information in an organism, according to Oregon State University, says that DNA’s information gets written out, or “transcribed,” as RNA information, and RNA’s information gets written out, or “translated,” into protein.
RNA
The ability of RNA and DNA to store and copy information depends on the molecules’ repeating nucleotide subunits. The nucleotides are organized in specific sequences, which can be read like letters in a word. Each nucleotide has three major parts: a sugar molecule, a phosphate group, and a cyclic compound called a nucleobase or base. Sugars from different nucleotide units hook up via phosphate bridges to create the repeating polymer of an RNA or DNA molecule — like a necklace made of sugar beads linked together by phosphate strings.
The nucleobases attached to the sugars constitute the sequence information needed to build proteins, as described by the National Human Genome Research Institute. RNA and DNA each have a set of four bases: adenine, guanine, cytosine, and thymine for DNA, with uracil swapping in for thymine in RNA. The four bases make up the molecules’ alphabets, and as such, are denoted as letters: A for adenine, G for guanine, and so forth. But RNA and DNA can do more than just encode “letter” sequences; they can also copy them. This works because the bases on one RNA or DNA string can stick to bases on another string, but only in a very specific way. Bases link up only with “complementary” partners: C to G and A to U in RNA (or A to T in the case of DNA). So, DNA serves as a template to transcribe an RNA molecule, which mirrors the DNA sequence — encoding a record of it.
A type of RNA called messenger RNA (mRNA) uses this copying function to ferry genetic data from DNA to the ribosomes, the protein-producing components of the cell, according to the University of Massachusetts. Ribosomes “read” mRNA sequences to determine the order in which protein subunits (amino acids) should join a growing protein molecule. Two other RNA species complete the process: Transfer RNA (tRNA) brings amino acids specified by mRNA to the ribosomes, while ribosomal RNA (rRNA), which makes up the bulk of a ribosome, links the amino acids together.
History of RNA
Nucleic acids were discovered in 1868 by Friedrich Miescher, who called the material ‘nuclein’ since it was found in the nucleus. It was later discovered that prokaryotic cells, which do not have a nucleus, also contain nucleic acids. The role of RNA in protein synthesis was suspected already in 1939
RNA as Enzyme
Scientists consider RNA’s central dogma activities central to the molecule’s definition. But ideas about what RNA is and what it can do have greatly expanded since the 1980s when biologists Sidney Altman and Thomas R. Cech discovered that RNA can operate like a protein. (The researchers won the 1989 Nobel Prize in Chemistry for their discovery.)
Proteins are key components for most chemical reactions in the body, serving as enzymes, thanks in part to the stunning variety of shapes, or conformations, these molecules can achieve. (Enzymes are proteins that facilitate and catalyze chemical reactions.) Unlike DNA, RNA can also shape-shift to an extent, and so can serve as an RNA-based enzyme, or ribozyme. RNA’s greater flexibility over DNA comes in part from the extra oxygen on RNA’s ribose sugar, which makes the molecule less stable, biologist Merlin Crossley wrote in The Conversation. The “deoxy” in deoxyribose reference DNA’s 1-oxygen deficit.
According to some researchers, the most important RNA-based catalytic activity happens in the ribosome, where rRNA, a ribozyme, mediates amino acid addition to growing proteins. Other ribozymes include small nuclear RNAs (snRNAs), which splice mRNA into usable forms, and M1 RNA, one of the first known ribozymes, which similarly clips bacterial tRNA.
RNA Regulator
The ability of RNA and DNA to store and copy information depends on the molecules’ repeating nucleotide subunits. The nucleotides are organized in specific sequences, which can be read like letters in a word.
Each nucleotide has three major parts: a sugar molecule, a phosphate group, and a cyclic compound called a nucleobase or base. Sugars from different nucleotide units hook up via phosphate bridges to create the repeating polymer of an RNA or DNA molecule — like a necklace made of sugar beads linked together by phosphate strings.
The nucleobases attached to the sugars constitute the sequence information needed to build proteins, as described by the National Human Genome Research Institute. RNA and DNA each have a set of four bases: adenine, guanine, cytosine, and thymine for DNA, with uracil swapping in for thymine in RNA. The four bases make up the molecules, and as such, are denoted as letters: A for adenine, G for guanine, and so forth.
But RNA and DNA can do more than just encode “letter” sequences; they can also copy them. This works because the bases on one RNA or DNA string can stick to bases on another string, but only in a very specific way. Bases link up only with “complementary” partners: C to G and A to U in RNA (or A to T in the case of DNA). So, DNA serves as a template to transcribe an RNA molecule, which mirrors the DNA sequence — encoding a record of it.
A type of RNA called messenger RNA (mRNA) uses this copying function to ferry genetic data from DNA to the ribosomes, the protein-producing components of the cell, according to the University of Massachusetts. Ribosomes “read” mRNA sequences to determine the order in which protein subunits (amino acids) should join a growing protein molecule. Two other RNA species complete the process: Transfer RNA (tRNA) brings amino acids specified by mRNA to the ribosomes, while ribosomal RNA (rRNA), which makes up the bulk of a ribosome, links the amino acids together.
RNA as an Enzyme
Scientists consider RNA’s central dogma activities central to the molecule’s definition. But ideas about what RNA is and what it can do have greatly expanded since the 1980s when biologists Sidney Altman and Thomas R. Cech discovered that RNA can operate like a protein. (The researchers won the 1989 Nobel Prize in Chemistry for their discovery.)
Proteins are key components for most chemical reactions in the body, serving as enzymes, in part to the stunning variety of shapes, or conformations, these molecules can achieve. (Enzymes are proteins that facilitate and catalyze chemical reactions.) Unlike DNA, RNA can also shape-shift to an extent, and so can serve as an RNA-based enzyme, or ribozyme. RNA’s greater flexibility over DNA comes in part from the extra oxygen on RNA’s ribose sugar, which makes the molecule less stable, biologist Merlin Crossley wrote in The Conversation. The “deoxy” in deoxyribose reference DNA’s 1-oxygen deficit.
According to some researchers, the most important RNA-based catalytic activity happens in the ribosome, where rRNA, a ribozyme, mediates amino acid addition to growing proteins. Other ribozymes include small nuclear RNAs (snRNAs), which splice mRNA into usable forms, and M1 RNA, one of the first known ribozymes, which similarly clips bacterial tRNA.
Structure of RNA
Ribonucleic acid has all the components same as that of the DNA with only 2 main differences within it. RNA has the same nitrogen bases called adenine, Guanine, and Cytosine as that of the DNA except for the Thymine which is replaced by the uracil. Adenine and uracil are considered the major building blocks of RNA and both of them form base-pair with the help of 2 hydrogen bonds.
RNA resembles a hairpin structure and like the nucleotides in DNA, nucleotides are formed in this ribonucleic material(RNA). Nucleosides are nothing but phosphate groups which sometimes also help in the production of nucleotides in the DNA
Functions of RNA
The ribonucleic acid – RNA, which is mainly composed of nucleic acids, is involved in a variety of functions within the cell and is found in all living organisms including bacteria, viruses, plants, and animals. These nucleic acid functions as structural molecule in cell organelles and are also involved in the catalysis of biochemical reactions. The different types of RNA are involved in a various cellular processes. The primary functions of RNA:
- Facilitate the translation of DNA into proteins
- Functions as an adapter molecule in protein synthesis
- Serves as a messenger between the DNA and the ribosomes.
- They are the carrier of genetic information in all living cells
- Promotes the ribosomes to choose the right amino acid which is required in building up new proteins in the body.
Types of RNA
There are various types of RNA, among which the most well-known and most commonly studied in the human body are
tRNA – Transfer RNA
The transfer RNA is held responsible for choosing the correct protein or the amino acids required by the body in turn helping the ribosomes. It is located at the endpoints of each amino acid. This is also called soluble RNA and it forms a link between the messenger RNA and the amino acid.
rRNA-Ribosomal RNA
The rRNA is the component of the ribosome and is located within the cytoplasm of a cell, where ribosomes are found. In all living cells, the ribosomal RNA plays a fundamental role in the synthesis and translation of mRNA into proteins. The rRNA is mainly composed of cellular RNA and is the most predominant RNA within the cells of all living beings.
mRNA – Messenger RNA.
This type of RNA functions by transferring the genetic material into the ribosomes and passing the instructions about the type of proteins, required by the body cells. Based on the functions, these types of RNA are called messenger RNA. Therefore, the mRNA plays a vital role in the process of transcription or during the protein synthesis process.
RNA Genome
Like DNA, RNA can carry genetic information. RNA viruses have genomes composed of RNA that encodes a number of proteins. The viral genome is replicated by some of those proteins, while other proteins protect the genome as the virus particle moves to a new host cell. Viroids are another group of pathogens, but they consist only of RNA, do not encode any protein, and are replicated by a host plant cell’s polymerase.
Double-Stranded RNA
Double-stranded RNA (dsRNA) is RNA with two complementary strands, similar to the DNA found in all cells, but with the replacement of thymine by uracil and the addition of one oxygen atom. dsRNA forms the genetic material of some viruses (double-stranded RNA viruses). Double-stranded RNA, such as viral RNA or siRNA, can trigger RNA interference in eukaryotes, as well as interferon response in vertebrates. In Eukaryotes, Double-stranded RNA (dsRNA) plays a role in the activation of the innate immune system against viral infections.
Conceptual Questions
Question 1: A nicked RNA molecule can be ligated by
Answer:
T4 DNA ligase
Question 2: The tertiary structure of yeast tRNA
Answer:
Involves extensive base stacking interactions, resembles the 3-dimensional structure of other tRNAs is maintained mostly by non-Watson-Crick base pairing
Question 3: Which of the following RNA characteristically contains unusual purines and pyrimidines?
Answer:
tRNA
Question 4: The anticodon is a structure on?
Answer:
tRNA. The anticodon is present in one of the loops of t RNA, which is necessary for the translation process.
Question 5: During RNA synthesis, the DNA template sequence 5’Tp Ap Gp Cp 3′ Would be transcribed to produce which of the following RNA?
Answer:
5′-Gp Cp Up Ap-3′
Question 6: Two features of the tRNA molecule associated, with converting the triplet codon to an amino acid, are
Answer:
In the anticodon loop and the 3′ CCA end, which is post-translational modifications.
Similar Reads
CBSE Class 12 Biology Syllabus
NCERT Class 12 Biology Syllabus: NCERT Class 12 Biology Syllabus covers important topics that provide students with a comprehensive understanding of living organisms, their structure, function, and behavior. These notes introduce fundamental concepts of biology including Sexual reproduction in Flowe
5 min read
CBSE Class 12 Biology Notes
CBSE Class 12 Chapter-wise Notes Biology helps students to score well in their board examinations. Class 12 Biology is a subject that comes with a wide range of topics, which include inheritance, evolution, reproduction, human health and disease, biotechnology, Ecosystem, and Biodiversity and Conser
4 min read
Chapter 1: Sexual Reproduction In Flowering Plants
Parts of a Flower and Their Functions
A flower is the reproductive structure of angiosperm that facilitates sexual reproduction. The 4 main parts of the flower include - sepals, petals, stamens (male parts of the flower), and carpels (female part of the flower). The different parts of the flower have their unique function. The primary f
9 min read
Pollen Grains
âPollen grains are minute structures of varying size and shape that contain the androecium, the male reproductive organ of a flower. Pollen grains are also called microgametophytes. The formation of pollen grains occurs through the process of microsporogenesis and consists of a protective outer laye
6 min read
The Structure and Functions of Pistil
In flowering plants, sexual reproduction is a complex process that involves the mating of male and female gametes to create seeds for the following generation. The pistil, which is located in the centre of the flower, is the female reproductive structure in flowering plants. What is Pistil?A pistil
4 min read
Pollination
Pollination is the biological process by which pollen from the male part of the flower transfers to the female part of the same or on different flowers. Pollination results in fertilization and the production of seeds. Pollination is important for the reproduction of plants. Pollination can occur in
6 min read
Double Fertilization: Process & Significance
Double fertilization is a unique reproductive process that occurs in flowering plants (angiosperms). Unlike in most other organisms where a single sperm fertilizes an egg, in double fertilization, one male gamete fertilizes the egg cell to form the embryo, while another male gamete fuses with two po
8 min read
Post Fertilization
Post-fertilization events are the processes that occur after the fusion of the male and female gametes during sexual reproduction. These post-fertilization events in flowering plants are crucial for the development of the zygote into a mature seed or fruit. Understanding post-fertilization events in
6 min read
Apomixis and Polyembryony: Differences, Types, Significance
Apomixis and polyembryony are two different but related biological processes that result in the production of offspring without fertilization. Apomixis is a type of asexual reproduction where seeds are produced without gametic fusion. While polyembryony is a process in which multiple embryos are pro
5 min read
Chapter 2: Human Reproduction
NCERT Notes on Human Reproduction Class 12 Chapter 2
NCERT Notes of Class 12 Chapter 2 Human Reproduction: Human reproduction is the biological process by which a new individual offspring is produced from one or two parent organisms. The Human Reproduction process involves the fusion of gametes, which are specialized cells that carry genetic informati
15+ min read
Gametogenesis - Spermatogenesis and Oogenesis
Gametogenesis is a process of producing male and female gametes, carried out by all sexually reproducing organisms. The process involves various multiple stages of division and differentiation and is highly regulated under hormonal control. GametogenesisGametogenesis produces male and female gametes
4 min read
Menstrual Cycle
In a day-to-day existence cycle, a lady's body is powerless against different changes. The pattern of these progressions happens in ladies consistently, emphatically for pregnancy is known as the feminine cycle. At the point when an ovum is unfertilized, the uterus lining sheds and prompts a dischar
10 min read
Fertilizations And Implantation
Fertilization and implantation are the 2 important events in human reproduction, which is the biological process of producing new individuals from a union of male and female gametes. This complex process involves the fusion of gametes, the development of a zygote, and the growth and differentiation
5 min read
Embryo Development - Development Process of Fetus
Birth gives process to a child is known as reproduction. A species' survival depends on its ability to reproduce. There are two different ways to reproduce: Sexual reproduction is asexual reproduction. Asexual reproduction is a type of reproduction that occurs without the involvement of 2 parents. A
5 min read
Parturition And Lactation - Biology Notes Class 12
Parturition And Lactation: Several intricate physiological processes, such as fertilisation, implantation, gestation, and delivery, are involved in human reproduction. The act of giving birth, often referred to as parturition, is a significant occasion that signals the conclusion of pregnancy and th
4 min read
Chapter 3: Reproductive Health
Notes on NCERT for Class 12 Biology Chapter 3 Reproductive Health
Notes on NCERT for Class 12 Biology Chapter 3 Reproductive Health: Reproductive health simply means people in a society living with physically and functionally normal reproductive organs and normal behavioral and emotional responses toward sex-related matters. According to WHO âreproductive health m
10 min read
Population Stabilization And Birth Control - Class 12
Population Stabilization And Birth Control: Reproductive Health means total well-being in all aspects of reproduction, i.e., physical, emotional, behavioral, and social. Counseling and raising awareness among people about reproductive organs, adolescence, and associated changes, safe and hygienic se
6 min read
Medical Termination of Pregnancy (MTP)
Medical termination of Pregnancy (MTP) is an intentional or voluntary termination of pregnancy before its full term. Before the 1960s, surgical methods like vacuum aspiration or dilatation and curettage were common, but medication has since emerged as an alternative option. Medical Termination of Pr
5 min read
Chapter 4: Principles Of Inheritance And Variation
Principles of Inheritance and Variation CBSE Notes for Chapter 4
Inheritance is the term given to the process by which characters are passed from parents to offspring which forms the basis of heredity. Heredity is the process of passing down genetic traits from parents to offspring. The degree of difference in characters between a parent and offspring is called v
15 min read
Mendel's Laws of Inheritance | Mendel's Experiments
Mendel's law of inheritance states that offspring inherited from their parents that results in similar characteristics of parents and offspring. This law of inheritance depends upon three other laws including the law of dominance, the law of segregation, law of independent assortment. Gregor Mendel
8 min read
Inheritance of One Gene Notes
We never wonder why Lion can give birth to Lions only, or why a bird can reproduce in the same species and no other species. Not everything is possible, Isn't it? Also, No human being look exactly identical, even with twins there are differences in every individual. Some siblings look similar while
6 min read
Chromosomal Theory of Inheritance
The essential idea behind the chromosomal theory of inheritance is that genes are located on chromosomes and that the behavior of chromosomes during meiosis and fertilization provides the basis for inheritance patterns. In the early 1900s, pioneering geneticists Walter Sutton and Theodor Boveri form
6 min read
Linkage And Recombination - Principles Of Inheritance And Variation Class 12 NCERT
CBSE Class 12- Principles Of Inheritance And Variation- Linkage And Recombination: Linkage and recombination are the phenomena that describe the inheritance of genes. Linkage and Recombination both are related to the genetic information inherited from parents to offspring. Linkage is the tendency of
6 min read
What is Polygenic Inheritance?
Polygenic inheritance is a type of inheritance in which multiple genes control the phenotype of an organism. The phenotypes or traits can be height, skin color, the color of the eyes, etc. This type of inheritance is also known as quantitative inheritance or multifactorial inheritance. Such traits a
7 min read
Mutation
The human body might be visualized as a simple organism. But it is the combination of different complex processes. From the outside, a human body might resemble a very simple one. A body that has two arms, two legs & one head for monitoring purposes. But from the inside of the body, there are ma
15+ min read
Chromosomal Disorders: Principles of Inheritance And Variation Class12
CBSE Class-12 Principles Of Inheritance And Variation - Chromosomal Disorders: The chromosomes are thread-like structures that are mainly present in the nucleus which carries the hereditary information of genes that are passed from the parents to the offspring. Due to some irregularities of cell div
5 min read
Chapter 5: Molecular Basis Of Inheritance
Evolution Notes for Class 12 Chapter 6
Evolutionary biology is the study of the evolutionary processes that produced the diversity of life on Earth. Earth came into existence sometime between 4 and 5 billion years ago. Life evolved on planet Earth about 3.5 billion years ago. Since then, approximately 15 million different species of orga
11 min read
Molecular Basis of Inheritance Notes Class 12
CBSE Class 12 Molecular Basis of Inheritance: Inheritance is transmitted by certain molecules that Mendel termed as âfactorsâ, but their nature was discovered later with the development of various scientific techniques. The molecules which govern the inheritance are called genes and it is of two typ
15+ min read
DNA: Structure, Types, and Functions
DNA structure is made of nucleotide base pairs (other than RNA). DNA is the hereditary material that is possessed by all the organisms found on the Earth except certain virus species. DNA functions involve the transfer of genetic information from generation to generation. The full form of DNA is Deo
11 min read
Packaging of DNA Helix: Histones & Importance
DNA packaging refers to the process through which DNA molecules are tightly compacted into a smaller volume so that they can fit into the nucleus of a cell. DNA packaging is important because the length of DNA molecules is much greater than the size of the cell nucleus, and therefore, if the DNA wer
5 min read
Search For Genetic Material
The search for genetic material has been important in understanding inheritance and evolution. Scientists have explored various models and experiments to identify the substance responsible for transmitting hereditary traits. From Griffith's transformation experiments to Avery, MacLeod, and McCarty's
5 min read
Difference Between DNA and RNA
The difference Between DNA and RNA lies in their structure, function, and location within cells, with DNA typically double-stranded, storing genetic information in the nucleus, while RNA is generally single-stranded, involved in protein synthesis, and present in various cellular compartments. DNA (D
6 min read
RNA - Definition, Structure, Types and Functions
RNA is a ribonucleic acid that helps in the synthesis of proteins in our body. This nucleic acid is responsible for the production of new cells in the human body. It is usually obtained from the DNA molecule. RNA resembles the same that of DNA, the only difference being that it has a single strand u
11 min read
DNA Replication
DNA replication is a fundamental biological process by which a cell duplicates its entire DNA. DNA is a self-replicating structure and the replication is catalyzed by enzymes. Through DNA Replication, genetic information is passed on from one generation of cells to the next during cell division. It
8 min read
The Experimental Proof Of DNA Replication
The process by which cells duplicate their genetic material during cell divisionâthe replication of DNAâwas still largely a mystery. This sparked a race to understand how DNA replication happens among several well-known experts. The experimental evidence of DNA replication, which showed that DNA rep
5 min read
Transcription of DNA
Transcription of DNA is a cellular process where the genetic information encoded in DNA is converted into RNA. It initiates with RNA polymerase binding to the DNA at a specific promoter region. Then, the enzyme unwinds the DNA and synthesizes a complementary RNA strand by following the DNA template.
6 min read
Genetic Code - Molecular Basis of Inheritance
CBSE Class12- Molecular Basis Of Inheritance- Genetic Code: The sequence of nucleotides in deoxyribonucleic acid and ribonucleic acid which determines the amino acids sequence of proteins is known as Genetic code. DNA consists of information for protein sequences. RNA consists of four nucleotides: a
5 min read
Genetic Code and Mutations
Genetic code and mutations are important to understand and explain the central dogma of biology. The set of rules governing how DNA sequences are translated into proteins is the genetic code. The four nucleotide bases adenine (A), thymine (T), guanine (G), and cytosine (C), which are organized in pa
5 min read
tRNA - the Adapter Molecule
tRNA is also known as transfer RNA is a subtype of RNA, tRNA help in the protein synthesis process. tRNA carries the amino acid to the ribosome, which is the molecular machine that assembles the protein, and ensures that the amino acid is incorporated into the growing protein chain in the correct or
5 min read
RNA Translation
The Central Dogma, claims that once "information" has transferred into protein, it cannot be retrieved. In greater detail, information transmission from nucleic acid to the nucleic acid or nucleic acid to protein may be conceivable, but transfer from protein to protein or protein to nucleic acid is
15+ min read
Lac Operon
Lac operon consists of the genes that are required for the metabolism of lactose in a bacterium E. coli and some other enteric bacteria. The name Lac operon actually stands for lactose operon. Lac operon works only when the nutrient source lacks glucose and has only lactose as it takes more steps to
7 min read
Human Genome Project
Human Genome Project was the worldâs largest collaborative biological project that gave us the ability to examine the full genetic manual for creating a human being in nature. HGP was international scientific research that mainly aims to determine the base pairs that make human DNA, as well as the i
9 min read
What is DNA Fingerprinting?
DNA Fingerprinting is a technique used to identify individuals by analyzing their unique DNA patterns. Studying the DNA Fingerprinting steps and process helps in understanding genetic relationships, solving crimes, and identifying individuals based on their unique DNA profiles. In this article, we w
10 min read
Chapter 6: Evolution
Origin of Life
The origin of life on earth is one of the mysteries to mankind. According to a common man, life is gifted by god whereas scientists believe that life has originated from non-living matter by natural means. This mystery of whether life originated from non-living matter was solved by scientists Pirie.
4 min read
Evolution Of Life Forms â A Theory
Evolution is a process of gradual changes in the heritable characteristics of a biological population, over successive generations, over a long period. (Population: - It is a group of individuals of the same species who live in the same area and can interbreed) Theories of EvolutionTill now, several
5 min read
Understanding Adaptive Radiation: Evolutionary Diversification Explained
Adaptive radiation is a phenomenon observed in evolutionary biology, that involves the rapid diversification of species into various forms to exploit new ecological niches. This process leads to the exposure of multiple species with distinct adaptations, enhancing their survival in diverse environme
4 min read
Hardy-Weinberg Principle
A system of guidelines for genetic inheritance is known as mendelian inheritance. A monk by the name of Gregor Mendel made the initial discoveries of genetics in the 1850s, and his findings were first published in 1866. People have been aware of how qualities are passed on from parents to their offs
13 min read
Evolution Of Humans - History, Stages, Characteristics, FAQs
Humans, or Homo sapiens, are a species of upright-walking beings known for their cultural diversity, inhabiting the Earth's surface. Believed to have originated in Africa around 315,000 years ago, human evolution is a complex process involving the development of traits such as bipedalism and languag
6 min read
Chapter 7: Human Health and Disease
NCERT Notes on Class 12 Biology Chapter 7 - Human Health and Disease
NCERT Chapter 7 of Class 12 Notes on Human Health and Disease: According to the World Health Organisation, health can be defined as a state of complete physical, mental, and social well-being and not merely the absence of disease and infirmity. Good health has many benefits like it helps to keep us
15+ min read
Common Diseases In Humans
Disease: - A disease is a physiological condition in which the human body fights against the external or internal causes of infection. On the basis of externally caused diseases, various examples are present, ranging from bacteria, viruses, protozoans, helminths, and many more. Pathogen: - The patho
5 min read
Immunity - Definition, Types and Vaccination
Immunity is a defense mechanism of the body that is provided by the immune system and helps in fighting disease-causing organisms. There are two immunity types: innate and acquired immunity. Immunity-enhancing foods help boost the body's immune system Vaccination also enhances immunity by exposing t
11 min read
Innate And Acquired Immunity
The immune system fights against germs and foreign substances on the skin, in the body's tissues, and in bodily fluids such as blood. The overall ability of the host to fight the disease-causing organisms conferred by the immune system is called Immunity. The immune system can be broadly categorized
5 min read
Importance of Vaccines, Vaccination and Immunization
Vaccination and immunization play a crucial role in protecting individuals and communities from infectious diseases. They help to stimulate the immune system and prepare it to recognize and fight off specific pathogens. Vaccination classes 6 and 12 are important topics frequently asked in examinatio
7 min read
Alcohol and Drug Abuse Prevention Control
As opposed to the normal thoughts pervasive in general society, substance use is very far-reaching. So is substance misuse. It's anything but a little issue, confined to the domain of the feeble and detestable. The utilization of medications rises above race, orientation, age, or financial status. T
10 min read
Chapter 8: Microbes In Human Welfare
Microbes in Human Welfare Notes
CBSE Class 12 Chapter 8 Microbes in Huaman Welfare: Microbes are the smallest living organisms that can only be seen under the microscope. Microbes are found everywhere. Examples- are air, water, soil, inside and outside the bodies of plants and animals, thermal vents (1000 degree Celsius), under th
6 min read
Microbes In Human Welfare
Microbes are microscopic organisms, that can be classified under protozoa, bacteria, fungi, and microscopic plants viruses, viroid, and prions (proteinaceous infectious agents). They are present everywhereâ in soil, water, and air, inside our bodies, animals, and plants. Not only in life forms, but
6 min read
Biofertilizers
Biofertilizers are biologically active substances that help in enriching the soil's fertility. Biofertilizers are microbes or microbial products. It helps to reduce the use of chemical fertilizers. Reducing the use of chemical fertilizers from the environment biofertilizers helps to protect the ecos
8 min read