Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • DSA
  • Interview Problems on Tree
  • Practice Tree
  • MCQs on Tree
  • Tutorial on Tree
  • Types of Trees
  • Basic operations
  • Tree Traversal
  • Binary Tree
  • Complete Binary Tree
  • Ternary Tree
  • Binary Search Tree
  • Red-Black Tree
  • AVL Tree
  • Full Binary Tree
  • B-Tree
  • Advantages & Disadvantages
Open In App
Next Article:
Preorder Traversal of N-ary Tree Without Recursion
Next article icon

Replace every node with depth in N-ary Generic Tree

Last Updated : 27 May, 2024
Comments
Improve
Suggest changes
Like Article
Like
Report

Given an array arr[] representing a Generic(N-ary) tree. The task is to replace the node data with the depth(level) of the node. Assume level of root to be 0.

Array Representation: The N-ary tree is serialized in the array arr[] using level order traversal as described below: 
 

  • The input is given as a level order traversal of N-ary Tree.
  • The first element of the array arr[] is the root node.
  • Then, followed by a number N, which denotes the number of children of the previous node. Value zero denotes Null Node.


Examples: 
 

Input: arr[] = { 10, 3, 20, 30, 40, 2, 40, 50, 0, 0, 0, 0 } 
Below is the N-ary Tree of the above array level order traversal: 

NarrayTreeExample1


Output: 
Below is the representation of the above output:  

NarrayTreeExample1Solution


Input: arr[] = {1, 3, 2, 3, 4, 2, 5, 6, 0, 0, 2, 8, 9, 0} 
Below is the N-ary Tree of the above array level order traversal: 

example-1


Output: 
Below is the representation of the above output: 


example-2

Approach: 

  • Traverse the tree starting from root.
  • While traversing pass depth of node as a parameter.
  • Track depth by passing it as 0 for root and (1 + current level) for children.

Below is the implementation of the above approach:

CPP
// C++ program to implement node with // it's depth value #include <bits/stdc++.h> using namespace std;  // Treenode class using template template <typename T> class TreeNode { public:     // To store node value     T data;      // Pointer to TreeNode to store     // the child node     vector<TreeNode<T>*> children;      // Constructor to assign data     // to node     TreeNode(T data)     {         this->data = data;     }      // Destructors to delete a node     ~TreeNode()     {         for (int i = 0;              i < children.size(); i++) {             delete children[i];         }     } };  // Function to take input level wise // i.e., in level order traversal TreeNode<int>* takeInputLevelWise(int arr[]) {     int idx = 1;      // Input root     int rootData = arr[0];      // Initialize tree with a root node     TreeNode<int>* root         = new TreeNode<int>(rootData);      // Initialise queue for appending     // node as a child of parent in     // N-ary tree     queue<TreeNode<int>*> pendingNodes;      // Push the root node in queue     pendingNodes.push(root);      // While queue is not empty append     // child to the root     while (pendingNodes.size() != 0) {          // Take the first node         TreeNode<int>* front             = pendingNodes.front();         pendingNodes.pop();          // Input number of child         int numChild = arr[idx];         idx++;          for (int i = 0; i < numChild; i++) {              int childData = arr[idx];             idx++;              // Make child Node             TreeNode<int>* child                 = new TreeNode<int>(childData);              // Append child node to             // it's parent             front->children.push_back(child);             pendingNodes.push(child);         }     }     return root; }  // Function to print each node data // in level order void printLevelATNewLine(TreeNode<int>* root) {     queue<TreeNode<int>*> q;     q.push(root);     q.push(NULL);     while (!q.empty()) {          TreeNode<int>* first = q.front();         q.pop();          if (first == NULL) {             if (q.empty()) {                 break;             }             cout << endl;             q.push(NULL);             continue;         }          cout << first->data << " ";          for (int i = 0;              i < first->children.size(); i++) {             q.push(first->children[i]);         }     } }  // Helper function to replace the // node data with their level value void helper(TreeNode<int>* root,             int depth) {      // Replace the node data with     // it's depth     root->data = depth;     for (int i = 0;          i < root->children.size(); i++) {          helper(root->children[i], depth + 1);     } }  // Function to replace with depth void replaceWithDepthValue(TreeNode<int>* root) {     helper(root, 0); }  // Driver Code int main() {      // Given level order traversal in     // the array arr[]     int arr[] = { 1, 3, 2, 3, 4, 2, 5, 6, 0, 0, 2, 8, 9, 0};      // Initialise Tree     TreeNode<int>* root;     root = takeInputLevelWise(arr);      // Function call to replace with     // depth value     replaceWithDepthValue(root);      // Function call to print     // in level order     printLevelATNewLine(root);     return 0; } 
Java
// Java program to replace node with // it's depth value  // Importing classes and interface import java.util.ArrayList; import java.util.LinkedList; import java.util.Queue;  class GFG {     // TreeNode class     static class TreeNode<T> {         // To store node value         T data;          // List of TreeNode to store         // the child nodes         ArrayList<TreeNode<T> > children;          // Constructor to assign data to node         TreeNode(T data)         {             this.data = data;             children = new ArrayList<TreeNode<T> >();         }     }      // Function to take input level wise     // i.e., in level order traversal     static TreeNode<Integer> takeInputLevelWise(int arr[])     {         int idx = 1;          // Input root         int rootData = arr[0];          // Initialize tree with a root node         TreeNode<Integer> root             = new TreeNode<Integer>(rootData);          // Initialize queue for appending         // node as a child of parent in         // N-ary tree         Queue<TreeNode<Integer> > pendingNodes             = new LinkedList<TreeNode<Integer> >();          // Push the root node in queue         pendingNodes.add(root);          // While queue is not empty append         // child to the node         while (pendingNodes.size() != 0) {              // Take the first node             TreeNode<Integer> front = pendingNodes.peek();             pendingNodes.poll();              // Input number of its child             int numChild = arr[idx];             idx++;              for (int i = 0; i < numChild; i++) {                 int childData = arr[idx];                 idx++;                  // Make child Node                 TreeNode<Integer> child                     = new TreeNode<Integer>(childData);                  // Append child node to                 // it's parent                 front.children.add(child);                 pendingNodes.add(child);             }         }         return root;     }      // Function to print each node data     // in level order     static void printLevelATNewLine(TreeNode<Integer> root)     {         Queue<TreeNode<Integer> > q             = new LinkedList<TreeNode<Integer> >();         q.add(root);         q.add(null);         while (!q.isEmpty()) {             TreeNode<Integer> first = q.peek();             q.poll();              if (first == null) {                 // If there is no more nodes                 if (q.isEmpty()) {                     break;                 }                 // All the nodes of current level are                 // visited                 System.out.println();                 q.add(null);                 continue;             }              System.out.print(first.data + " ");              // Append current node's child to queue             for (int i = 0; i < first.children.size();                  i++) {                 q.add(first.children.get(i));             }         }     }      // Helper function to replace the     // node data with their level value     static void helper(TreeNode<Integer> root, int depth)     {         // Replace the node data with         // it's depth         root.data = depth;         for (int i = 0; i < root.children.size(); i++) {             helper(root.children.get(i), depth + 1);         }     }      // Function to replace with depth     static void     replaceWithDepthValue(TreeNode<Integer> root)     {         helper(root, 0);     }      // Driver Code     public static void main(String[] args)     {         // Given level order traversal in         // the array arr[]         int arr[]             = { 10, 3, 20, 30, 40, 2, 40, 50, 0, 0, 0, 0 };          // Initialise Tree         TreeNode<Integer> root;         root = takeInputLevelWise(arr);          // Function call to replace with         // depth value         replaceWithDepthValue(root);          // Function call to print         // in level order         printLevelATNewLine(root);     } }  // This code is contributed by jainlovely450 
Python
# Python code for the above approach from typing import List, Tuple  # TreeNode class class TreeNode:        # To store node value     data: int          # List of TreeNode to store     # the child nodes     children: List['TreeNode']      # Constructor to assign data to node     def __init__(self, data: int):         self.data = data         self.children = []  # Function to take input level wise # i.e., in level order traversal def take_input_level_wise(arr: List[int]) -> TreeNode:     idx = 1          # Input root     root_data = arr[0]          # Initialize tree with a root node     root = TreeNode(root_data)          # Initialize queue for appending     # node as a child of parent in     # N-ary tree     pending_nodes = [root]          # While queue is not empty append     # child to the node     while pending_nodes:                # Take the first node         front = pending_nodes[0]         pending_nodes = pending_nodes[1:]                  # Input number of its child         num_child = arr[idx]         idx += 1         for i in range(num_child):             child_data = arr[idx]             idx += 1                          # Make child Node             child = TreeNode(child_data)                          # Append child node to             # it's parent             front.children.append(child)             pending_nodes.append(child)     return root  # Function to print each node data # in level order def print_level_at_new_line(root: TreeNode):     q = [root]     q.append(None)     while q:         first = q[0]         q = q[1:]         if first is None:                        # If there is no more nodes             if not q:                 break                              # All the nodes of current level are             # visited             print()             q.append(None)             continue         print(first.data, end=' ')                  # Append current node's child to queue         for i in range(len(first.children)):             q.append(first.children[i])  # Helper function to replace the # node data with their level value def helper(root: TreeNode, depth: int):        # Replace the node data with     # it's depth     root.data = depth     for i in range(len(root.children)):         helper(root.children[i], depth + 1)  # Function to replace with depth def replace_with_depth_value(root: TreeNode):     helper(root, 0)   # Driver Code if __name__ == '__main__':        # Given level order traversal in     # the array arr[]     arr = [10, 3, 20, 30, 40, 2, 40, 50, 0, 0, 0, 0]      # Initialise Tree     root = take_input_level_wise(arr)      # Function call to replace with     # depth value     replace_with_depth_value(root)      # Print the tree in level order     print_level_at_new_line(root)      # This code is contributed by Potta Lokesh 
C#
using System; using System.Collections.Generic;  // Class to represent a node with data and its children in // N-ary tree class TreeNode<T> {     public T Data     {         get;         set;     }     public List<TreeNode<T> > Children     {         get;         set;     }      public TreeNode(T data)     {         this.Data = data;         this.Children = new List<TreeNode<T> >();     } }  class GFG {     static void Main(string[] args)     {         // Input level order data         int[] arr             = { 10, 3, 20, 30, 40, 2, 40, 50, 0, 0, 0, 0 };          // Initialize Tree with root node         var root = TakeInputLevelWise(arr);          // Replace the node data with their depth value         ReplaceWithDepthValue(root, 0);          // Print level order         PrintLevelAtNewLine(root);     }      // Function to take input level wise     static TreeNode<int> TakeInputLevelWise(int[] arr)     {         int idx = 1;          // Input root data         int rootData = arr[0];         var root = new TreeNode<int>(rootData);          // Initialise queue for appending node as a child of         // parent         var pendingNodes = new Queue<TreeNode<int> >();          // Push the root node in queue         pendingNodes.Enqueue(root);          // While queue is not empty append child to the root         while (pendingNodes.Count != 0) {             // Take the first node             var front = pendingNodes.Dequeue();              // Input number of children             int numChild = arr[idx];             idx++;              for (int i = 0; i < numChild; i++) {                 int childData = arr[idx];                 idx++;                  // Make child node                 var child = new TreeNode<int>(childData);                  // Append child node to its parent                 front.Children.Add(child);                 pendingNodes.Enqueue(child);             }         }          return root;     }      // Function to print level order     static void PrintLevelAtNewLine(TreeNode<int> root)     {         var q = new Queue<TreeNode<int> >();         q.Enqueue(root);         q.Enqueue(null);          while (q.Count != 0) {             var first = q.Dequeue();              if (first == null) {                 if (q.Count == 0) {                     break;                 }                  Console.WriteLine();                 q.Enqueue(null);                 continue;             }              Console.Write(first.Data + " ");              foreach(var child in first.Children)             {                 q.Enqueue(child);             }         }     }      // Function to replace node data with their depth value     static void ReplaceWithDepthValue(TreeNode<int> root,                                       int depth)     {         root.Data = depth;          foreach(var child in root.Children)         {             ReplaceWithDepthValue(child, depth + 1);         }     } } //This Code is Contributed by chinmaya121221 
JavaScript
// JavaScript program to replace node with it's depth value  // TreeNode class class TreeNode {   constructor(data) {        // To store node value     this.data = data;          // List of TreeNode to store the child nodes     this.children = [];   } }  // Function to take input level wise i.e., in level order traversal function takeInputLevelWise(arr) {   let idx = 1;    // Input root   let rootData = arr[0];    // Initialize tree with a root node   const root = new TreeNode(rootData);    // Initialize queue for appending node as a child of parent in N-ary tree   const pendingNodes = [];    // Push the root node in queue   pendingNodes.push(root);    // While queue is not empty append child to the node   while (pendingNodes.length !== 0) {     // Take the first node     const front = pendingNodes.shift();      // Input number of its child     const numChild = arr[idx];     idx++;      for (let i = 0; i < numChild; i++) {       const childData = arr[idx];       idx++;        // Make child Node       const child = new TreeNode(childData);        // Append child node to it's parent       front.children.push(child);       pendingNodes.push(child);     }   }   return root; }  // Function to print each node data in level order function printLevelATNewLine(root) {   const q = [];   q.push(root);   q.push(null);   while (q.length !== 0) {     const first = q.shift();      if (first === null) {       // If there is no more nodes       if (q.length === 0) {         break;       }              // All the nodes of current level are visited       console.log("<br>");       q.push(null);       continue;     }      console.log(first.data + " ");      // Append current node's child to queue     for (let i = 0; i < first.children.length; i++) {       q.push(first.children[i]);     }   } }  // Helper function to replace the node data with their level value function helper(root, depth) {    // Replace the node data with it's depth   root.data = depth;   for (let i = 0; i < root.children.length; i++) {     helper(root.children[i], depth + 1);   } }  // Function to replace with depth function replaceWithDepthValue(root) {   helper(root, 0); }  // Given level order traversal in the array arr[] const arr = [10, 3, 20, 30, 40, 2, 40, 50, 0, 0, 0, 0];  // Initialise Tree let root = takeInputLevelWise(arr);  // Function call to replace with depth value replaceWithDepthValue(root);  // Function call to print in level order printLevelATNewLine(root);  // This code is contributed by sankar. 

Output
0  1 1 1  2 2  3 3 

Time Complexity: O(N), where N is the number of nodes in Tree. 
Auxiliary Space: O(N), where N is the number of nodes in Tree.

Another Approach: We can also replace the node’s value with its depth while creating the tree. We are traversing the array level wise which means that nodes currently present in the queue are of the same depth. As we append its child nodes to the queue, they will be present in the next level. We can initialize a variable as current depth equal to 1 and when we create child node we can assign its value to current depth level. After traversing all the nodes present in the current level we will increment current depth level by 1.

C++
// C++ program to implement node with // it's depth value #include <bits/stdc++.h> using namespace std;  // Treenode class using template template <typename T> class TreeNode { public:     // To store node value     T data;      // Pointer to TreeNode to store     // the child node     vector<TreeNode<T>*> children;      // Constructor to assign data     // to node     TreeNode(T data) { this->data = data; }      // Destructors to delete a node     ~TreeNode()     {         for (int i = 0; i < children.size(); i++) {             delete children[i];         }     } };  // Function to take input level wise // i.e., in level order traversal TreeNode<int>* takeInputLevelWise(int arr[]) {     int idx = 1;     int depthLevel = 1;      // Initialize tree with a root node     // with depth 0     TreeNode<int>* root = new TreeNode<int>(0);      // Initialise queue for appending     // node as a child of parent in     // N-ary tree     queue<TreeNode<int>*> pendingNodes;      // Push the root node in queue     pendingNodes.push(root);      // While queue is not empty append     // child to the node     while (pendingNodes.size() != 0) {         // Number of nodes present in the current level         int size = pendingNodes.size();          while (size > 0) {             // Take the first node             TreeNode<int>* front = pendingNodes.front();             pendingNodes.pop();              // Input number of its child             int numChild = arr[idx];             idx++;              for (int i = 0; i < numChild; i++) {                 idx++;                 // Make child Node and assign its data                 // value equal to depthLevel                 TreeNode<int>* child                     = new TreeNode<int>(depthLevel);                  // Append child node to                 // it's parent                 front->children.push_back(child);                 pendingNodes.push(child);             }             size--;         }         // Increment depth level         depthLevel++;     }     return root; }  // Function to print each node data // in level order void printLevelATNewLine(TreeNode<int>* root) {     queue<TreeNode<int>*> q;     q.push(root);     q.push(NULL);     while (!q.empty()) {         TreeNode<int>* first = q.front();         q.pop();          if (first == NULL) {             // If there is no more nodes to visit             if (q.empty()) {                 break;             }             // All the nodes of current level are visited             cout << endl;             q.push(NULL);             continue;         }          cout << first->data << " ";         // Append current node's child to queue         for (int i = 0; i < first->children.size(); i++) {             q.push(first->children[i]);         }     } }  // Driver Code int main() {     // Given level order traversal in     // the array arr[]     int arr[]         = { 10, 3, 20, 30, 40, 2, 40, 50, 0, 0, 0, 0 };      // Initialise Tree     TreeNode<int>* root;     root = takeInputLevelWise(arr);      // Function call to print     // in level order     printLevelATNewLine(root);     return 0; }  // This code is contributed by jainlovely450 
Java
// Java program to implement node with // it's depth value  // Importing classes and interface import java.util.ArrayList; import java.util.LinkedList; import java.util.Queue;  public class GFG {      // TreeNode class     static class TreeNode<T> {         // To store node value         T data;          // List of TreeNode to store         // the child nodes         ArrayList<TreeNode<T> > children;          // Constructor to assign data to node         TreeNode(T data)         {             this.data = data;             children = new ArrayList<TreeNode<T> >();         }     }      // Function to take input level wise     // i.e., in level order traversal and     // assign value of node equal to its depth     static TreeNode<Integer> takeInputLevelWise(int arr[])     {         int idx = 1;         int depthLevel = 1;                // Initialize tree with a root node         // with depth 0         TreeNode<Integer> root = new TreeNode<Integer>(0);                 // Initialize queue for appending         // node as a child of parent in         // N-ary tree         Queue<TreeNode<Integer> > pendingNodes             = new LinkedList<TreeNode<Integer> >();          // Push the root node in queue         pendingNodes.add(root);          // While queue is not empty append         // child to the node         while (!pendingNodes.isEmpty()) {             // Number of nodes present in the current level             int size = pendingNodes.size();              while (size > 0) {                 TreeNode<Integer> front                     = pendingNodes.peek();                 pendingNodes.poll();                  // Input number of child                 int numChild = arr[idx];                 idx++;                 for (int i = 0; i < numChild; i++) {                     idx++;                      // Make child Node and assign its data                     // value equal to depthLevel                     TreeNode<Integer> child                         = new TreeNode<Integer>(depthLevel);                      // Append child node to                     // it's parent                     front.children.add(child);                     pendingNodes.add(child);                 }                 size--;             }             // Increment depth level             depthLevel++;         }         return root;     }      // Function to print each node data     // in level order     static void printLevelATNewLine(TreeNode<Integer> root)     {         Queue<TreeNode<Integer> > q             = new LinkedList<TreeNode<Integer> >();         q.add(root);         q.add(null);         while (!q.isEmpty()) {             TreeNode<Integer> first = q.peek();             q.poll();             if (first == null) {                 // If there is no more nodes to visit                 if (q.isEmpty()) {                     break;                 }                 // All the nodes of current level are                 // visited                 System.out.println();                 q.add(null);                 continue;             }              System.out.print(first.data + " ");              // Append current node's child to queue             for (int i = 0; i < first.children.size();                  i++) {                 q.add(first.children.get(i));             }         }     }      // Driver Code     public static void main(String[] args)     {          // Given level order traversal in         // the array arr[]         int arr[]             = { 10, 3, 20, 30, 40, 2, 40, 50, 0, 0, 0, 0 };          // Initialize Tree         TreeNode<Integer> root;         root = takeInputLevelWise(arr);          // Function call to print         // in level order         printLevelATNewLine(root);     } }  // This code is contributed by jainlovely450 
Python
# Python code  # TreeNode class class TreeNode:   # To store node value   def __init__(self, data):     self.data = data     # List of TreeNode to store     # the child nodes     self.children = []  # Function to take input level wise # i.e., in level order traversal and # assign value of node equal to its depth def takeInputLevelWise(arr):   idx = 1   depthLevel = 1      # Initialize tree with a root node   # with depth 0   root = TreeNode(0)     # Initialize queue for appending   # node as a child of parent in   # N-ary tree   pendingNodes = []   pendingNodes.append(root)    # While queue is not empty append   # child to the node   while pendingNodes:     # Number of nodes present in the current level     size = len(pendingNodes)      while size > 0:       front = pendingNodes[0]       pendingNodes.pop(0)        # Input number of child       numChild = arr[idx]       idx += 1       for i in range(numChild):         idx += 1          # Make child Node and assign its data         # value equal to depthLevel         child = TreeNode(depthLevel)          # Append child node to         # it's parent         front.children.append(child)         pendingNodes.append(child)       size -= 1     # Increment depth level     depthLevel += 1   return root  # Function to print each node data # in level order def printLevelATNewLine(root):   q = []   q.append(root)   q.append(None)   while q:     first = q[0]     q.pop(0)     if first is None:       # If there is no more nodes to visit       if not q:         break       # All the nodes of current level are       # visited       print()       q.append(None)       continue     print(first.data, end=" ")      # Append current node's child to queue     for i in range(len(first.children)):       q.append(first.children[i])  # Driver Code if __name__ == '__main__':   # Given level order traversal in   # the array arr[]   arr = [10, 3, 20, 30, 40, 2, 40, 50, 0, 0, 0, 0]    # Initialize Tree   root = takeInputLevelWise(arr)    # Function call to print   # in level order   printLevelATNewLine(root) 
C#
// C# program to implement node with it's depth value  using System; using System.Collections.Generic;  public class GFG {      // TreeNode class     class TreeNode<T> {         // To store node value         public T data;          // List of TreeNode to store         // the child nodes         public List<TreeNode<T> > children;          // Constructor to assign data to node         public TreeNode(T data)         {             this.data = data;             children = new List<TreeNode<T> >();         }     }      // Function to take input level wise i.e., in level     // order traversal and assign value of node equal to its     // depth     static TreeNode<int> takeInputLevelWise(int[] arr)     {         int idx = 1;         int depthLevel = 1;          // Initialize tree with a root node with depth 0         TreeNode<int> root = new TreeNode<int>(0);          // Initialize queue for appending node as a child of         // parent in N-ary tree         Queue<TreeNode<int> > pendingNodes             = new Queue<TreeNode<int> >();          // Push the root node in queue         pendingNodes.Enqueue(root);          // While queue is not empty append child to the node         while (pendingNodes.Count != 0) {             // Number of nodes present in the current level             int size = pendingNodes.Count;              while (size > 0) {                 TreeNode<int> front = pendingNodes.Peek();                 pendingNodes.Dequeue();                  // Input number of child                 int numChild = arr[idx];                 idx++;                 for (int i = 0; i < numChild; i++) {                     idx++;                      // Make child Node and assign its data                     // value equal to depthLevel                     TreeNode<int> child                         = new TreeNode<int>(depthLevel);                      // Append child node to it's parent                     front.children.Add(child);                     pendingNodes.Enqueue(child);                 }                 size--;             }             // Increment depth level             depthLevel++;         }         return root;     }      // Function to print each node data in level order     static void printLevelATNewLine(TreeNode<int> root)     {         Queue<TreeNode<int> > q             = new Queue<TreeNode<int> >();         q.Enqueue(root);         q.Enqueue(null);         while (q.Count != 0) {             TreeNode<int> first = q.Peek();             q.Dequeue();             if (first == null) {                 // If there is no more nodes to visit                 if (q.Count == 0) {                     break;                 }                 // All the nodes of current level are                 // visited                 Console.WriteLine();                 q.Enqueue(null);                 continue;             }              Console.Write(first.data + " ");              // Append current node's child to queue             for (int i = 0; i < first.children.Count; i++) {                 q.Enqueue(first.children[i]);             }         }     }      static public void Main()     {          // Code         // Given level order traversal in the array arr[]         int[] arr             = { 10, 3, 20, 30, 40, 2, 40, 50, 0, 0, 0, 0 };          // Initialize Tree         TreeNode<int> root;         root = takeInputLevelWise(arr);          // Function call to print in level order         printLevelATNewLine(root);     } }  // This code is contributed by karthik. 
JavaScript
// JavaScript program to implement node with // it's depth value  // TreeNode class class TreeNode {   // To store node value   constructor(data) {     this.data = data;     // List of TreeNode to store     // the child nodes     this.children = [];   } }  // Function to take input level wise // i.e., in level order traversal and // assign value of node equal to its depth function takeInputLevelWise(arr) {   let idx = 1;   let depthLevel = 1;    // Initialize tree with a root node   // with depth 0   const root = new TreeNode(0);    // Initialize queue for appending   // node as a child of parent in   // N-ary tree   const pendingNodes = [];    // Push the root node in queue   pendingNodes.push(root);    // While queue is not empty append   // child to the node   while (pendingNodes.length !== 0) {     // Number of nodes present in the current level     let size = pendingNodes.length;      while (size > 0) {       const front = pendingNodes.shift();        // Input number of child       const numChild = arr[idx];       idx++;       for (let i = 0; i < numChild; i++) {         idx++;          // Make child Node and assign its data         // value equal to depthLevel         const child = new TreeNode(depthLevel);          // Append child node to         // it's parent         front.children.push(child);         pendingNodes.push(child);       }       size--;     }     // Increment depth level     depthLevel++;   }   return root; }  // Function to print each node data // in level order function printLevelATNewLine(root) {   const q = [];   q.push(root);   q.push(null);   while (q.length !== 0) {     const first = q.shift();     if (first === null) {       // If there is no more nodes to visit       if (q.length === 0) {         break;       }       // All the nodes of current level are       // visited       console.log("<br>");       q.push(null);       continue;     }      console.log(first.data + " ");      // Append current node's child to queue     for (let i = 0; i < first.children.length; i++) {       q.push(first.children[i]);     }   }   console.log("<br>") }  // Given level order traversal in // the array arr[] const arr = [10, 3, 20, 30, 40, 2, 40, 50, 0, 0, 0, 0];  // Initialize Tree const root = takeInputLevelWise(arr);  // Function call to print // in level order printLevelATNewLine(root);  // This code is contributed by karthik. 

Output
0  1 1 1  2 2 

Time Complexity: O(N), where N is the number of nodes in Tree. 
Auxiliary Space: O(N), where N is the number of nodes in Tree.



Next Article
Preorder Traversal of N-ary Tree Without Recursion
author
priyanshu21101997
Improve
Article Tags :
  • DSA
  • Tree
  • DFS
  • n-ary-tree
  • tree-level-order
Practice Tags :
  • DFS
  • Tree

Similar Reads

  • Introduction to Generic Trees (N-ary Trees)
    Generic trees are a collection of nodes where each node is a data structure that consists of records and a list of references to its children(duplicate references are not allowed). Unlike the linked list, each node stores the address of multiple nodes. Every node stores address of its children and t
    5 min read
  • What is Generic Tree or N-ary Tree?
    Generic tree or an N-ary tree is a versatile data structure used to organize data hierarchically. Unlike binary trees that have at most two children per node, generic trees can have any number of child nodes. This flexibility makes them suitable for representing hierarchical data where each node can
    4 min read
  • N-ary Tree Traversals

    • Inorder traversal of an N-ary Tree
      Given an N-ary tree containing, the task is to print the inorder traversal of the tree. Examples:  Input: N = 3   Output: 5 6 2 7 3 1 4Input: N = 3   Output: 2 3 5 1 4 6  Approach: The inorder traversal of an N-ary tree is defined as visiting all the children except the last then the root and finall
      6 min read

    • Preorder Traversal of an N-ary Tree
      Given an N-ary Tree. The task is to write a program to perform the preorder traversal of the given n-ary tree. Examples: Input: 3-Array Tree 1 / | \ / | \ 2 3 4 / \ / | \ 5 6 7 8 9 / / | \ 10 11 12 13 Output: 1 2 5 10 6 11 12 13 3 4 7 8 9 Input: 3-Array Tree 1 / | \ / | \ 2 3 4 / \ / | \ 5 6 7 8 9 O
      14 min read

    • Iterative Postorder Traversal of N-ary Tree
      Given an N-ary tree, the task is to find the post-order traversal of the given tree iteratively.Examples: Input: 1 / | \ 3 2 4 / \ 5 6 Output: [5, 6, 3, 2, 4, 1] Input: 1 / \ 2 3 Output: [2, 3, 1] Approach:We have already discussed iterative post-order traversal of binary tree using one stack. We wi
      10 min read

    • Level Order Traversal of N-ary Tree
      Given an N-ary Tree. The task is to print the level order traversal of the tree where each level will be in a new line. Examples: Input: Output: 13 2 45 6Explanation: At level 1: only 1 is present.At level 2: 3, 2, 4 is presentAt level 3: 5, 6 is present Input: Output: 12 3 4 56 7 8 9 1011 12 1314Ex
      11 min read

    • ZigZag Level Order Traversal of an N-ary Tree
      Given a Generic Tree consisting of n nodes, the task is to find the ZigZag Level Order Traversal of the given tree.Note: A generic tree is a tree where each node can have zero or more children nodes. Unlike a binary tree, which has at most two children per node (left and right), a generic tree allow
      8 min read

  • Depth of an N-Ary tree
    Given an n-ary tree containing positive node values, the task is to find the depth of the tree.Note: An n-ary tree is a tree where each node can have zero or more children nodes. Unlike a binary tree, which has at most two children per node (left and right), the n-ary tree allows for multiple branch
    5 min read
  • Mirror of n-ary Tree
    Given a Tree where every node contains variable number of children, convert the tree to its mirror. Below diagram shows an example. We strongly recommend you to minimize your browser and try this yourself first. Node of tree is represented as a key and a variable sized array of children pointers. Th
    9 min read
  • Insertion in n-ary tree in given order and Level order traversal
    Given a set of parent nodes where the index of the array is the child of each Node value, the task is to insert the nodes as a forest(multiple trees combined together) where each parent could have more than two children. After inserting the nodes, print each level in a sorted format. Example: Input:
    10 min read
  • Diameter of an N-ary tree
    The diameter of an N-ary tree is the longest path present between any two nodes of the tree. These two nodes must be two leaf nodes. The following examples have the longest path[diameter] shaded. Example 1: Example 2:  Prerequisite: Diameter of a binary tree. The path can either start from one of th
    15+ min read
  • Sum of all elements of N-ary Tree
    Given an n-ary tree consisting of n nodes, the task is to find the sum of all the elements in the given n-ary tree. Example: Input: Output: 268Explanation: The sum of all the nodes is 11 + 21 + 29 + 90 + 18 + 10 + 12 + 77 = 268 Input: Output: 360Explanation: The sum of all the nodes is 81 + 26 + 23
    5 min read
  • Serialize and Deserialize an N-ary Tree
    Given an N-ary tree where every node has the most N children. How to serialize and deserialize it? Serialization is to store a tree in a file so that it can be later restored. The structure of the tree must be maintained. Deserialization is reading the tree back from the file. This post is mainly an
    11 min read
  • Easy problems on n-ary Tree

    • Check if the given n-ary tree is a binary tree
      Given an n-ary tree consisting of n nodes, the task is to check whether the given tree is binary or not.Note: An n-ary tree is a tree where each node can have zero or more children nodes. Unlike a binary tree, which has at most two children per node (left and right), the n-ary tree allows for multip
      6 min read

    • Largest element in an N-ary Tree
      Given an n-ary tree containing positive node values, the task is to find the node with the largest value in the given n-ary tree.Note: An n-ary tree is a tree where each node can have zero or more children nodes. Unlike a binary tree, which has at most two children per node (left and right), the n-a
      5 min read

    • Second Largest element in n-ary tree
      Given an n-ary tree containing positive node values, the task is to find the node with the second largest value in the given n-ary tree. If there is no second largest node return -1.Note: An n-ary tree is a tree where each node can have zero or more children nodes. Unlike a binary tree, which has at
      7 min read

    • Number of children of given node in n-ary Tree
      Given a node x, find the number of children of x(if it exists) in the given n-ary tree. Example : Input : x = 50 Output : 3 Explanation : 50 has 3 children having values 40, 100 and 20. Approach : Initialize the number of children as 0.For every node in the n-ary tree, check if its value is equal to
      7 min read

    • Number of nodes greater than a given value in n-ary tree
      Given a n-ary tree and a number x, find and return the number of nodes which are greater than x. Example: In the given tree, x = 7 Number of nodes greater than x are 4. Approach: The idea is maintain a count variable initialize to 0. Traverse the tree and compare root data with x. If root data is gr
      6 min read

    • Check mirror in n-ary tree
      Given two n-ary trees, determine whether they are mirror images of each other. Each tree is described by e edges, where e denotes the number of edges in both trees. Two arrays A[]and B[] are provided, where each array contains 2*e space-separated values representing the edges of both trees. Each edg
      11 min read

    • Replace every node with depth in N-ary Generic Tree
      Given an array arr[] representing a Generic(N-ary) tree. The task is to replace the node data with the depth(level) of the node. Assume level of root to be 0. Array Representation: The N-ary tree is serialized in the array arr[] using level order traversal as described below:   The input is given as
      15+ min read

    • Preorder Traversal of N-ary Tree Without Recursion
      Given an n-ary tree containing positive node values. The task is to print the preorder traversal without using recursion.Note: An n-ary tree is a tree where each node can have zero or more children. Unlike a binary tree, which has at most two children per node (left and right), the n-ary tree allows
      7 min read

    • Maximum value at each level in an N-ary Tree
      Given a N-ary Tree consisting of nodes valued in the range [0, N - 1] and an array arr[] where each node i is associated to value arr[i], the task is to print the maximum value associated with any node at each level of the given N-ary Tree. Examples: Input: N = 8, Edges[][] = {{0, 1}, {0, 2}, {0, 3}
      9 min read

    • Replace each node in given N-ary Tree with sum of all its subtrees
      Given an N-ary tree. The task is to replace the values of each node with the sum of all its subtrees and the node itself. Examples Input: 1 / | \ 2 3 4 / \ \ 5 6 7Output: Initial Pre-order Traversal: 1 2 5 6 7 3 4 Final Pre-order Traversal: 28 20 5 6 7 3 4 Explanation: Value of each node is replaced
      8 min read

    • Path from the root node to a given node in an N-ary Tree
      Given an integer N and an N-ary Tree of the following form: Every node is numbered sequentially, starting from 1, till the last level, which contains the node N.The nodes at every odd level contains 2 children and nodes at every even level contains 4 children. The task is to print the path from the
      10 min read

    • Determine the count of Leaf nodes in an N-ary tree
      Given the value of 'N' and 'I'. Here, [Tex]I [/Tex]represents the number of internal nodes present in an N-ary tree and every node of the N-ary can either have [Tex]N [/Tex]childs or zero child. The task is to determine the number of Leaf nodes in n-ary tree. Examples: Input : N = 3, I = 5 Output :
      4 min read

    • Remove all leaf nodes from a Generic Tree or N-ary Tree
      Given an n-ary tree containing positive node values, the task is to delete all the leaf nodes from the tree and print preorder traversal of the tree after performing the deletion.Note: An n-ary tree is a tree where each node can have zero or more children nodes. Unlike a binary tree, which has at mo
      6 min read

    • Maximum level sum in N-ary Tree
      Given an N-ary Tree consisting of nodes valued [1, N] and an array value[], where each node i is associated with value[i], the task is to find the maximum of sum of all node values of all levels of the N-ary Tree. Examples: Input: N = 8, Edges[][2] = {{0, 1}, {0, 2}, {0, 3}, {1, 4}, {1, 5}, {3, 6},
      9 min read

    • Number of leaf nodes in a perfect N-ary tree of height K
      Find the number of leaf nodes in a perfect N-ary tree of height K. Note: As the answer can be very large, return the answer modulo 109+7. Examples: Input: N = 2, K = 2Output: 4Explanation: A perfect Binary tree of height 2 has 4 leaf nodes. Input: N = 2, K = 1Output: 2Explanation: A perfect Binary t
      4 min read

    • Print all root to leaf paths of an N-ary tree
      Given an N-Ary tree, the task is to print all root to leaf paths of the given N-ary Tree. Examples: Input: 1 / \ 2 3 / / \ 4 5 6 / \ 7 8 Output:1 2 41 3 51 3 6 71 3 6 8 Input: 1 / | \ 2 5 3 / \ \ 4 5 6Output:1 2 41 2 51 51 3 6 Approach: The idea to solve this problem is to start traversing the N-ary
      7 min read

    • Minimum distance between two given nodes in an N-ary tree
      Given a N ary Tree consisting of N nodes, the task is to find the minimum distance from node A to node B of the tree. Examples: Input: 1 / \ 2 3 / \ / \ \4 5 6 7 8A = 4, B = 3Output: 3Explanation: The path 4->2->1->3 gives the minimum distance from A to B. Input: 1 / \ 2 3 / \ \ 6 7 8A = 6,
      11 min read

    • Average width in a N-ary tree
      Given a Generic Tree consisting of N nodes, the task is to find the average width for each node present in the given tree. The average width for each node can be calculated by the ratio of the total number of nodes in that subtree(including the node itself) to the total number of levels under that n
      8 min read

    • Maximum width of an N-ary tree
      Given an N-ary tree, the task is to find the maximum width of the given tree. The maximum width of a tree is the maximum of width among all levels. Examples: Input: 4 / | \ 2 3 -5 / \ /\ -1 3 -2 6 Output: 4 Explanation: Width of 0th level is 1. Width of 1st level is 3. Width of 2nd level is 4. There
      9 min read

geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences