Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
    • Practice Coding Problems
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Chemistry Class 11 Notes
  • Physical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry
  • Analytical Chemistry
  • Biochemistry
  • Chemical Elements
  • Chemical Compounds
  • Chemical Formula
  • Real life Application of Chemistry
  • Chemistry Class 8 Notes
  • Chemistry Class 9 Notes
  • Chemistry Class 10 Notes
  • Chemistry Class 12 Notes
Open In App
Next Article:
What is Quantitative Analysis?
Next article icon

Qualitative Analysis of Organic Compounds

Last Updated : 01 Feb, 2022
Comments
Improve
Suggest changes
Like Article
Like
Report

Organic chemistry is a branch of science that studies the structure, properties, and interactions of organic compounds having covalent carbon bonds. By examining their structure, their structural formula can be derived. To better understand their behavior, physical and chemical properties, as well as chemical reactivity, are investigated. The study of organic processes includes the chemical synthesis of natural products, pharmaceuticals, and polymers, as well as laboratory and theoretical (in silico) studies of individual organic molecules.

Organic chemistry studies hydrocarbons (compounds comprising only carbon and hydrogen) and compounds based on carbon but also includes other elements such as oxygen, nitrogen, sulphur, phosphorus (present in many biochemicals), and the halogens. The study of compounds containing organometallic elements is known as organometallic chemistry.

Qualitative Analysis of Organic Compounds

After organic compounds have been synthesized in their purest form, qualitative analysis is used to identify their structure and characterization. The analysis provides insight into the constituents that make up the chemical. Carbon, hydrogen, oxygen, and nitrogen (in some cases) are the most prevalent components found in organic molecules, hence they are detected through analysis. Sulfur, halogens, metals, and phosphorus are occasionally found and detected via qualitative analysis.

Detection of Carbon and Hydrogen

Principle

Dry copper (II) oxide or cupric oxide can be used to detect carbon and hydrogen in an organic molecule. In a hard glass tube, the organic compound is heated with dry copper (II) oxide. The compound's carbon will be oxidized to carbon dioxide, while the hydrogen will be oxidized to water. The following are the reactions:

C + 2CuOΔ → CO2 + 2Cu

2H + 2CuOΔ → HO2 + 2Cu

For example, if the organic chemical under test has the molecular formula CxHy, then its full combustion in the presence of cupric oxide can be stated as:

CxHy + (2x + y/2)CuOΔ → xCO2 + y/2H2O + (2x + y/2)Cu

The ability of carbon dioxide to render lime water milky can be used to detect it (Calcium Carbonate is formed). The ability of water to condense on the cool sections of the test tube can be used to identify it. Anhydrous copper sulfate becomes 'blue' as a result of this reaction.

Ca(OH)2 + CO2 → CaCO3 + H2O

CuSO4 + 5H2O → CuSO4 ⋅ 5H2O

Procedure

A small amount of the dry and pure organic component is mixed with about 5-6 times the weight of dry and pure cupric oxide powder in the laboratory. The combination is then heated to a high temperature in a rigid test tube with a delivery tube. The delivery tube has a bulb in the middle and is dipped into the lime water on the other end, as depicted.

Glass wool and anhydrous copper sulfate are put into the delivery tube's bulb. When carbon is heated, it is oxidized to carbon dioxide, turning the lime water milky. The anhydrous copper sulfate on the bulb becomes blue when hydrogen in the organic chemical is oxidized to water, indicating its presence.

Detection of Nitrogen

Nitrogen is found in some organic molecules, such as amines and nitro compounds. A set of experiments are used to detect nitrogen in various organic molecules, as follows:

  • Dry heating test: It confirms the presence of nitrogen when the organic component under examination is intensely heated and generates a burnt hair or feather odor. However, the test has limits because many nitrogen-containing substances do not generate odor.
  •  Soda-lime test: In a dry test tube, a little amount of organic substance is heated vigorously with soda lime (NaOH+CaO). The presence of nitrogen is indicated if the vapors smell like ammonia.

           NH2CONH2 + 2NaOHCaO,Δ → 2NH3 + Na2CO3  

However, these assays have limitations, like many organic compounds with Nitro and Azo (–N=N–) groups do not show up in this test.

  •  Lassaigne’s test: Lassaigne’s test is used to detect nitrogen, halogens, and sulfur in an organic compound. This is one of the most reliable tests used to detect these components. The elements present in the organic compounds are fused with sodium metal to convert them from covalent to their ionic form.
  1. Preparing Lassaigne’s extract: In a fusion tube, a little amount of sodium is heated vigorously until it forms a globule. The tube is removed from the flame once the globule has formed, and a little amount of organic chemical is added to the tube, which is then heated vigorously until the tube turns red hot. Meanwhile, prepare a China dish with 10-15 mL of water. When the tube becomes red hot, it is dipped into a water-filled China dish and filtered. The resulting filtrate is known as the Sodium Fusion Extract or Lassaigne's Extract.
  2. Testing for Nitrogen element: Because the sodium in the extract combines with the excess water to generate sodium hydroxide, the sodium fusion extract is alkaline. To keep the solution alkaline, sodium hydroxide is sometimes added. To this alkaline solution of Sodium fusion extract, a freshly made ferrous sulfate (FeSO4) is added. The mixture is then slightly warmed before being chilled. To acidify the solution, a small amount of dilute sulfuric acid is added. If there is nitrogen in the solution, it will turn green or blue. The presence of nitrogen and sulfur in the organic component is indicated by the solution turning blood-red.

The reactions for the above test are as follows:

During the fusion process, the carbon and nitrogen in the organic component combine to generate sodium cyanide, as shown:

Na + C + N → NaCN

When sodium ferrocyanide or sodium hexacyanoferrate (II) is heated with ferrous sulfate solution, some of the Fe2+ or ferrous ions are oxidized to ferric (Fe3+) ions. Prussian blue is produced when ferric ions combine with sodium hexacyanoferrate (II) to yield Iron (II) hexacyanoferrate (II) or ferric ferrocyanide.

  1. 2NaCN + FeSO4 → Na2SO4 + Fe(CN)2
  2. Fe(CN)2 + 4NaCN → Na4[Fe(CN)6] Sodiumhexacyanoferrate (ii)
  3. 3Na4[Fe(CN)6] + 4Fe3+ → Fe4[Fe(CN)6]3

Detection of Halogens

The halogens, if present in the organic compound, can be detected using the following tests:

  •  Beilstein’s Test: Beilstein's test for detecting halogens in organic compounds is a simple, sensitive, and effective method. A clean and stout copper wire is heated in the Bunsen burner's non-luminous flame until the flame's bluish-green or greenish color fades. After that, the wire is immersed in the organic compound and exposed to the flame once more. The creation of cupric halides, and hence the presence of halogen in the compound, is indicated by the flame turning bluish-green or green. Even molecules like urea and thiourea, for example, display this test due to the creation of volatile cupric cyanide, which has some restrictions. It also doesn't say what kind of halogens are present in the chemical (bromine, chlorine, or iodine).
  • Lassaigne’s Test: It is an extremely accurate assay for detecting halogens in organic compounds. The preparation of Sodium Fusion Extract or Lassaigne's Extract is the first stage. The halogens in organic compounds are transformed to sodium halides in the following way:

Na + X → NaX

The next step is to boil a portion of the extract in weak nitric acid and then strain the solution. A few drops of silver nitrate solution are added to this and the following precipitates are tested:

  1. Chlorine is indicated by the formation of a white precipitate that is soluble in ammonia but insoluble in dilute HNO3.
  2. The presence of bromine is indicated by the formation of a pale-yellow precipitate that is somewhat soluble in ammonia.
  3. The presence of iodine is indicated by the formation of a yellow precipitate that is insoluble in ammonia.

Detection of Sulphur

Sulfur, present in an organic compound can be detected using the following tests:

  •  Lassaigne’s Test: When a sulfur-containing organic component is fused with sodium, the resulting extract contains sodium sulfide.

2Na + S → Na2S

The presence of sulfur in the chemical will be confirmed by the following tests:

  •  Sodium Nitroprusside Test: If a small amount of sodium fusion extract is treated with a few drops of sodium nitroprusside, the compound will turn violet, indicating that it contains sulfur. Standing still causes the violet color to fade slowly.

Na2S + Na4[Fe(CN)5(NO)] → Na4[Fe(CN)5(NOS)]

  • Lead Acetate Test: Dilute acetic acid is added to the second half of the portion to acidify it, followed by a few drops of lead acetate. The presence of sulfur in the organic compound is established if a dark precipitate indicating the development of lead sulfide is observed.

Na2 S + (CH3COO)2 Pb → PbS + 2CH3COONa

Detection of Phosphorus

By fusing the organic compound with sodium peroxide, an oxidizing agent, the presence of phosphorus in the organic component can be determined. The organic compound's phosphorus is oxidized to sodium phosphate.

5Na2O2 + 2PΔ → 2Na3PO4 + 2Na2O

Water is used to remove the fused material, and the resulting aqueous solution is subsequently heated with strong nitric acid. Ammonium molybdate is added to this. The presence of phosphorus is indicated by a yellow precipitate or color (due to the production of ammonium phosphomolybdate).

Detection of Oxygen

While there are no direct tests for detecting the presence of oxygen in an organic substance, the procedures listed below can establish its existence indirectly

  1. The presence of functional groups or tests to confirm the presence of functional groups such as −OH,−COOH,−NO2, etc., indicates the presence of oxygen indirectly.
  2. When the sum percentages of components in an organic molecule determined by quantitative analysis do not equal 100 %, the differential sum indicates the presence of oxygen, and its proportion can be calculated.

Sample Problems

Question 1: What is qualitative analysis for organic compounds and why it is important?

Answer

Organic compound qualitative analysis is a non-quantifiable analysis of organic compounds. It's significant since it provides a detailed account of the elements found in organic molecules.

Question 2: Which steps are used in the qualitative analysis of organic compounds?

Answer

For different elements such as oxygen, nitrogen, carbon and hydrogen, sulphur, phosphorus, and halogens, qualitative analysis employs various methods of detection or tests. Each of these tests has its own set of instructions to follow and must be completed independently.

Question 3: Which method is used for the detection of Nitrogen in an organic compound?

Answer

Three separate tests are used to detect nitrogen: the dry heating test, the soda lime test, and Lassaigne's test.

Question 4: How can we detect the presence of sulfur in an organic compound?

Answer

Sulphur can be detected by utilising Lassaigne's extract and treating it with either sodium nitroprusside or lead acetate and acetic acid to produce a violet coloration or a yellow precipitate or coloration.

Question 5: What are the types of qualitative analysis?

Answer

Individual constituents in an organic complex can be detected through qualitative analysis. Each element has its own set of tests that are used to validate that it is present in the organic complex under examination.

Question 6: How oxygen is being detected?

Answer 

  1. The existence of functional groups or tests to validate the presence of functional groups (such as OH, COOH, NO2, etc.) indirectly implies the presence of oxygen.
  2. The differential sum reveals the existence of oxygen, and its proportion may be computed, when the total percentages of components in an organic molecule determined by quantitative analysis do not equal 100%.

Next Article
What is Quantitative Analysis?

O

omkarsinghbaghel
Improve
Article Tags :
  • School Learning
  • Class 11
  • Chemistry
  • Chemistry-Class-11

Similar Reads

    Chemistry
    Chemistry is the scientific study of matter, its properties, composition, and interactions. It is often referred to as the central science because it connects and bridges the physical sciences, such as physics and biology. Understanding chemistry is crucial for comprehending the world around us, fro
    6 min read

    Chapter 1 - Some Basic Concepts of Chemistry

    Importance of Chemistry in Everyday Life
    Importance of Chemistry in Everyday Life: The scientific study of matter's properties and behavior is known as chemistry. It is a natural science that studies the elements that makeup matter, as well as the compounds, made up of atoms, molecules, and ions: their composition, structure, qualities, an
    10 min read
    What is Matter ?
    The three basic states of matter are solid, liquid, and gaseous. All of the materials we come into contact with on a daily basis (from ice cream to chairs to water) are composed of matter. On the basis of intermolecular forces and particle arrangement, matter can be classified into three states: sol
    9 min read
    Properties of Matter
    Every matter has its own set of properties. Physical and chemical properties can be used to classify these properties. Physical properties are those that may be measured or observed without affecting the substance's identity or composition. Physical properties include odor, color, density, and so on
    9 min read
    Measurement Uncertainty
    In Chemistry, students often deal with experimental data and theoretical calculations. Most of the data is present in an extremely large number of quantum. This uncertainty in measurement is the range of possible values within which the true/real value of the measurement exists. There are practical
    9 min read
    Laws of Chemical Combination
    Laws of Chemical Combination are one of the most fundamental building blocks of the subject of chemistry. As in our surrounding different matter reacts with each other and form various kind of different substances. Laws of Chemical Combination are the collection of laws that explains how these subst
    7 min read
    Dalton's Atomic Theory
    In the year 1808, the English scientist and chemist John Dalton proposed Dalton's atomic hypothesis, a scientific theory on the nature of matter. It asserted that all matter is made up of atoms, which are tiny, indivisible units. According to Dalton's atomic theory, all substances are made up of ato
    8 min read
    Gram Atomic and Gram Molecular Mass
    Avogadro's number is critical to understanding the structure of molecules as well as their interactions and combinations. e.g. because one atom of oxygen will combine with two atoms of hydrogen to form one molecule of water (H2O), one mole of oxygen (6.022 × 1023 of O atoms) will mix with two moles
    7 min read
    Mole Concept
    Mole concept is the method used to express the amount of substance. This has been experimentally proving that one gram atom of any element, as well as one gram molecule of any substance, contains the same amount of entities. The experimentally decided number is found to be 6.022137 × 1023. After the
    10 min read
    Percentage Composition - Definition, Formula, Examples
    Different constituent elements make up any chemical compound. In some chemical reaction calculations, you'll need to figure out how much of a certain element is in a specific compound. Or, in order to understand the contribution of a specific element in any of the stoichiometric calculations of a ch
    5 min read
    Stoichiometry and Stoichiometric Calculations
    Jeremias Richter, a German chemist, was the first to create or discover the word Stoichiometry. The quantitative analysis of the reactants and products involved in a chemical reaction is known as chemical stoichiometry. The name "stoichiometry" comes from the Greek words "stoikhein" (element) and "m
    7 min read

    Chapter 2 - Structure of Atom

    Composition of an Atom
    Atom is the smallest unit into which matter can be divided without the release of electrically charged particles. It is also the smallest unit of matter that has the characteristic properties of a chemical element. As such, the atom is the basic building block of matter. Atoms are extremely small, t
    8 min read
    Atomic Structure
    Atomic structure is the structure of an atom that consists of a nucleus at the center containing neutrons and protons, while electrons revolve around the nucleus. Atoms are made up of a very tiny, positively charged nucleus that is surrounded by a cloud of negatively charged electrons. The earliest
    15+ min read
    Developments Leading to Bohr's Model of Atom
    Neils Bohr, a scientist, expanded on Rutherford's model of the atom through his experiments. The dual nature of electromagnetic radiation was an important element in the development of Bohr's model. This indicates that radiations can have both wave-like and particle-like properties. Let's take a clo
    6 min read
    Bohr's Model of the Hydrogen Atom
    The Bohr model of the hydrogen atom was the first atomic model to successfully explain the atomic hydrogen radiation spectra. Niels Bohr proposed the atomic Hydrogen model in 1913. The Bohr Model of the Hydrogen Atom attempts to fill in some of the gaps left by Rutherford's model. It has a special p
    9 min read
    Quantum Mechanical Atomic Model
    Schrödinger used the electron's wave-particle duality to design and solve a difficult mathematical equation that precisely represented the behaviour of the electron in a hydrogen atom in 1926. The solution to Schrödinger's equation yielded the quantum mechanical model of the atom. The quantization o
    8 min read

    Chapter 3 - Classification of Elements and Periodicity in Properties

    Classification of Elements
    Periodic categorization of elements is a way of grouping elements based on their characteristics, such as keeping elements that are similar in one group and the rest of the elements in the other. The elements are grouped in the long-form periodic table in order of their atomic numbers. The atomic nu
    8 min read
    Periodic Classification of Elements
    Periodic Classification of Elements refers to the arrangement of elements on the basis of the periodic repetition of their properties. It means the elements which exhibit similar properties on a regular interval are placed in the same group. In this article, we will learn about, History of the Class
    10 min read
    Modern Periodic Law
    All matter in our environment is made up of basic units known as elements. Initially, only 31 chemical elements were discovered in 1800 and it was easier to study their chemical and other properties. However, as more and more elements were discovered due to technological advancements in science, it
    6 min read
    118 Elements and Their Symbols
    Everything in the universe is composed of basic elements, and at their smallest level, these elements are atoms. There are a total of 118 elements in the modern periodic table out of which 98 are found in nature rest are chemically synthesized in laboratories. An atom of any element is composed of e
    9 min read
    Electronic Configuration in Periods and Groups
    Electronic Configuration is the arrangement of electrons in orbitals around an atomic nucleus. Electronic Configuration of a molecule refers to the distribution of electrons in various molecular orbitals. The number of electrons in bonding and antibonding molecular orbitals of a molecule or molecula
    9 min read
    Electron Configuration
    Electron Configuration of an element tells us how electrons are filled inside various orbitals of the atom. The distribution of electrons inside various orbital of atoms is very useful in explaining various properties of the atoms and their combination with other atoms. The electron configuration of
    8 min read
    S Block Elements
    S-block elements are those elements in which the last electron is present in the s-orbital. In the periodic table. They reside in the first 2 columns. S-block consists of 14 elements that include, Hydrogen (H), Lithium (Li), Helium (He), Sodium (Na), Beryllium (Be), Potassium (K), Magnesium (Mg), Ru
    9 min read
    Periodic Table Trends
    Article with the name "Periodic Table Trends" as the name suggests explores the trends and patterns in the property of elements while arranged in the modern-day periodic table. Scientists in the early days observed that while arranging the elements based on either atomic weight or atomic number, ele
    13 min read

    Chapter 4 - Chemical Bonding and Molecular Structure

    Chemical Bonding
    Chemical Bonding as the name suggests means the interaction of different elements or compounds which defines the properties of matter. Chemical bonds are formed when either at least one electron is lost to another atom, obtaining at least one electron from a different atom, or transferring one elect
    12 min read
    Ionic Bond
    Ionic Bond is a bond that is formed by the electrostatic force of attraction between atoms. In an ionic bond, a complete transfer of electrons takes place in the process of bond formation. This bond is formed by the attracting force between the cations and the anions that are formed by the donating
    8 min read
    Bond Parameters - Definition, Order, Angle, Length
    Several bond parameters, such as bond length, bond angle, bond order, and bond energy, can be used to characterize covalent bonds (also known as bond enthalpy). These bond parameters provide information about the stability of a chemical compound as well as the strength of the chemical bonds that hol
    7 min read
    VSEPR Theory
    VSEPR Theory tells us about the basic structure of the molecules based on the force of repulsion between lone pair and bond pair of electrons. It states that any molecule arranged in such a structure minimizes the repulsion between the lone pair and bond pair of the molecule. Let's learn more about
    9 min read
    Valence Bond Theory
    Valence bond theory (VBT) describes the formation of covalent bonds and the electronic structure of molecules. It assumes that electrons occupy atomic orbitals of individual atoms within a molecule, and that the electrons of one atom are attracted to the nucleus of another atom. VBT states that the
    7 min read
    Hybridization
    The concept of hybridization is defined as the process of combining two atomic orbitals to create a new type of hybridized orbitals. This intermixing typically results in the formation of hybrid orbitals with completely different energies, shapes, and so on. Hybridization is primarily carried out by
    7 min read
    Molecular Orbital Theory
    The Molecular Orbital Theory is a chemical bonding theory developed at the turn of the twentieth century by F. R. Hund and R. S. Mulliken to explain the structure and properties of various molecules. The valence-bond theory failed to adequately explain how certain molecules, such as resonance-stabil
    7 min read
    Hydrogen Bonding
    In chemistry, a hydrogen bond is an electrostatic force of attraction between a hydrogen atom and another electronegative atom. It is a special type of dipole-dipole force. Hydrogen bonding is the phenomenon of the formation of Hydrogen Bonds. H Bonds are stronger than any dipole-dipole bonds but we
    13 min read

    Chapter 5 - Thermodynamics

    Basics Concepts of Thermodynamics
    Thermodynamics is concerned with the ideas of heat and temperature, as well as the exchange of heat and other forms of energy. The branch of science that is known as thermodynamics is related to the study of various kinds of energy and its interconversion. The behaviour of these quantities is govern
    12 min read
    Applications of First Law of Thermodynamics
    Energy, like matter, is always conserved, which means that it cannot be created or destroyed, but it can be converted from one form to another. Internal energy is a thermodynamic attribute of a system that refers to the energy associated with the system's molecules and comprises both kinetic and pot
    8 min read
    Internal Energy as a State of System
    The various forms of energy are interconnected, and they can be converted from one form to another under certain conditions. The field of science known as thermodynamics is related to the study of various kinds of energy and its conversion. In thermodynamics, the system refers to the part of the uni
    8 min read
    Enthalpy Change of a Reaction
    The study of thermodynamics is the study of systems that are too large to be extrapolated by mechanics alone. For many generations, thermodynamics was vaguely understood, and many of the results were determined only experimentally. Some of the results posed great theoretical challenges for physicist
    9 min read
    Enthalpies for Different Types of Reactions
    Thermodynamics is a field of physics that studies the relationship between heat, work, and temperature, as well as their relationships with energy, entropy, and the physical properties of matter and radiation. The four principles of thermodynamics regulate the behaviour of these quantities, which pr
    10 min read
    What is Spontaneity? - Definition, Types, Gibbs Energy
    Thermodynamics is a discipline of physics that studies heat, work, and temperature, as well as their relationships with energy, radiation, and matter's physical characteristics. The four principles of thermodynamics regulate the behaviour of these quantities, which provide a quantitative description
    7 min read
    Gibbs Energy Change and Equilibrium
    Energy can take many forms, including kinetic energy produced by an object's movement, potential energy produced by an object's position, heat energy transferred from one object to another due to a temperature difference, radiant energy associated with sunlight, the electrical energy produced in gal
    10 min read

    Chapter 6 - Equilibrium

    Equilibrium in Physical Processes
    Equilibrium exists in physical processes, just as it does in chemical reactions. The equilibrium that arises between different states or phases of a substance, such as solid, liquid, and gas, is referred to as this. Let's take a closer look at how equilibrium works in physical processes. Substances
    11 min read
    Equilibrium in Chemical Processes
    Chemical equilibrium is the state of a system in which the reactant and product concentrations do not change over time and the system's attributes do not change further. Reactions take place in both forward and reverse directions. When the rates of the forward and reverse reactions are similar in su
    7 min read
    Law of Chemical Equilibrium and Equilibrium Constant
    During a chemical process, chemical equilibrium refers to the state in which the concentrations of both reactants and products have no tendency to fluctuate over time. When the forward and reverse reaction rates are equal, a chemical reaction is said to be in chemical equilibrium. The state is known
    8 min read
    Difference between Homogeneous and Heterogeneous Equilibria
    In our daily lives, we witness several reactions such as iron rusting, paper burning, curd sourness, ozone generation, and so on. Many of these reactions require the presence of components in distinct phases, such as solid iron reacting with gaseous oxygen to generate solid iron oxide, which we call
    7 min read
    Applications of Equilibrium Constants
    When a chemical process reaches equilibrium, the equilibrium constant (usually represented by the symbol K) provides information on the relationship between the products and reactants. For example, the equilibrium constant of concentration (denoted by Kc) of a chemical reaction at equilibrium can be
    6 min read
    What is the Relation between Equilibrium Constant, Reaction Quotient and Gibbs Energy?
    A scientist was observing a reaction and at a certain point and found the concentration of reactant is equal to the concentration of product and after some time and observed color of reactant is changing, the scientist found concentration of products is greater than the concentration of reactants, f
    8 min read
    Factors Affecting Chemical Equilibrium
    When the concentrations of reactants and products do not change over time, they are said to be in a state of equilibrium. The stability of certain observable attributes such as pressure, density, and so on can be used to identify this state. Physical equilibrium is the equilibrium set up in physical
    8 min read
    Ionic Equilibrium
    Reactants and products coexist in equilibrium, therefore reactant conversion to product is never greater than 100%. Equilibrium reactions may entail the breakdown of a covalent (non-polar) reactant or the ionisation of ionic compounds in polar solvents into their ions. This part will teach us about
    5 min read
    Acids, Bases and Salts
    Acids, Bases, and Salts are the main chemical compounds that exist in our surroundings. Acids, Bases, and Salts are compounds that occur naturally and can also be created artificially. They are found in various substances including our food. Vinegar or acetic acid is used as a food preservative. Cit
    15+ min read
    Ionization of Acids and Bases
    Ionization of a compound in Chemistry is the process by which neutral molecules are divided into charged ions in a solution. According to the Arrhenius Theory, acids are substances that dissociate in an aqueous medium to produce hydrogen ions, H+ ions, and bases are substances that dissociate in an
    6 min read
    Buffer Solution
    Buffer Solution is a special aqueous solution that resists the change in its pH when some quantity of acid and Base is added. Many fluids, such as blood, have specific pH values of 7.14, and variations in these values indicate that the body is malfunctioning. The change in pH of Buffer Solutions on
    10 min read
    Solubility Equilibria
    The word "solubility product" refers to inexpensively soluble salts. It is the greatest product of the molar concentration of the ions (raised to their appropriate powers) produced by compound dissociation. The solubility product is constant at any given temperature. The lower the solubility product
    5 min read

    Chapter 7 - Redox Reactions

    Redox Reactions
    Redox Reactions are oxidation and reduction reactions that happen simultaneously in a chemical reaction and in this, the reactant undergoes a change in its oxidation state. Redox stands for Reduction - Oxidation. Redox reaction is a common term used in both Chemistry and Biology. They are a certain
    14 min read
    Redox Reactions in terms of Electron Transfer
    A variety of chemical and biological reactions like burning of different types of fuels (wood, kerosene, coal, LPG, petrol, diesel), digestion of food in animals, photosynthesis by plants, extraction of aluminum from alumina, electricity generation from batteries or cell, rusting of iron fall in the
    4 min read
    Oxidation Number | Definition, How To Find, Examples
    Oxidation number is defined as the total number of electrons that an atom either gains or loses to form a chemical bond with another atom.  Let's learn about oxidation number in detail, including its rules and steps to calculate it with the help of examples. Table of Content Oxidation Number Definit
    13 min read
    Redox Reactions and Electrode Processes
    Electrode Potential and Standard Electrode Potential are key concepts in the field of electrochemistry which is the branch of chemistry that deals with relationships between electric potential differences and observable chemical change. Electrode Potential is also used extensively in the development
    8 min read

    Chapter 8 - Organic Chemistry – Some Basic Principles and Techniques

    Organic Chemistry - Some Basic Principles and Techniques
    Organic Chemistry is the branch of science that deals with the study of the structure, properties, composition, and reaction of hydrocarbons and their derivatives. It is the science of organic compounds and it started about 200-225 years ago. It is the branch of chemistry that deals with the scienti
    10 min read
    What is Catenation and Tetravalency?
    Carbon is a non-metallic element. Carbon is found in very small amounts in the earth's crust and atmosphere. Even though there is just a limited amount of carbon in nature, the carbon atom is extremely important in many aspects of life. We, as well as all living things, plants, and animals, are made
    6 min read
    Structural Representations of Organic Compounds
    Organic compounds are the most widely used compounds in chemistry as well as in everyday life. Any organic compound has only one chemical formula but can be represented on paper using various structural formulas as per our convenience and the complexity of the structure of the compound. In this arti
    5 min read
    Classification of Organic Compounds
    Organic compounds are defined as chemical compounds which contain carbon atoms linked with other elements through simple covalent bonds. These elements could be connected by single covalent bonds, double covalent bonds, or triple covalent bonds. In other words, we can say that all organic compounds
    12 min read
    IUPAC Nomenclature of Organic Compounds
    Organic Compounds are those which have Carbon-Hydrogen or Carbon-Carbon bonds. Chemistry is studied under three branches Organic, Inorganic, and Physical Chemistry with each dealing with different types of topics. For this article, we will focus on Organic Chemistry which is the study of carbon and
    13 min read
    Isomerism
    Isomerism refers to the phenomenon where two or more compounds have the same molecular formula but different structural arrangements or spatial orientations, resulting in distinct chemical properties. These compounds with the same formula but different structures are called isomers. Let's learn abou
    6 min read
    Fundamental Concepts in Organic Reaction Mechanism
    Organic chemistry is the chemistry of carbon compounds except for oxides of carbon and metal carbonates. Carbon has the uncommon characteristic of forming strong bonds with many other elements, particularly with other carbon atoms, to form chains and rings, giving rise to millions of organic molecul
    15+ min read
    Purification of Organic Compounds
    Organic chemistry is the study of carbon-containing molecules' structure, characteristics, content, reactions, and production. The majority of organic compounds contain carbon and hydrogen, but they may also contain a variety of other elements (e.g., nitrogen, oxygen, halogens, phosphorus, silicon,
    5 min read
    Qualitative Analysis of Organic Compounds
    Organic chemistry is a branch of science that studies the structure, properties, and interactions of organic compounds having covalent carbon bonds. By examining their structure, their structural formula can be derived. To better understand their behavior, physical and chemical properties, as well a
    10 min read
    What is Quantitative Analysis?
    Quantitative analysis is one of the important processes in chemistry. It is used to determine mass percent i.e. to determine the mass of every element present. It can also be defined as a method used to determine the number of chemicals in a sample. The mass per cent is important to find the molecul
    9 min read

    Chapter 9 - Hydrocarbons

    What are Hydrocarbons?
    Alkanes and cycloalkanes are hydrocarbons with no double or triple bond functional groups, depending on whether the carbon atoms of the molecule are organized in chains or rings. Alkenes and alkynes are hydrocarbons with double or triple bonds, respectively. The following mentioned are the rules for
    11 min read
    Classification of Hydrocarbons
    Organic chemistry is the branch of chemistry that deals with the reactions, structures, and properties (physical and chemical) of organic compounds that contain carbon atoms and covalent bonds (a chemical bond that involves sharing of electrons between atoms). Any group of organic chemical compounds
    10 min read
    Alkanes - Definition, Nomenclature, Preparation, Properties
    In natural science, a hydrocarbon is a natural atom comprising completely hydrogen and carbon. Hydrocarbons are an illustration of gathering 14 hydrides. Hydrocarbons are dreary and hydrophobic, with a slight scent. As a result of their diverse compound designs, it's difficult, to sum up anymore. Th
    7 min read
    Alkenes - Definition, Nomenclature, Preparation, Properties
    In organic chemistry, a hydrocarbon is an organic molecule consisting entirely of hydrogen and carbon. Hydrocarbons are an example of group 14 hydrides. Hydrocarbons are colourless and hydrophobic, with a slight odour. Because of their different chemical structures, it's hard to generalise anymore.
    6 min read
    Alkynes - Definition, Structure, Preparation, Properties
    A hydrocarbon is an organic molecule made completely of hydrogen and carbon in organic chemistry. Hydrocarbons are an example of hydrides in group 14. Hydrocarbons are colourless, hydrophobic, and have just a faint odour. It's impossible to generalise further due to their varied molecular architectu
    8 min read
    Aromatic Compounds
    Aromatic Hydrocarbons are alkyl, alkenyl, and alkynyl derivatives of cyclic hydrocarbons which include one or more benzene rings fused or isolated in their molecules and cyclic hydrocarbons are those hydrocarbons in which carbon atoms are connected to form a complete cycle or closed ring structure.
    9 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences