Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
    • Practice Coding Problems
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Numpy exercise
  • pandas
  • Matplotlib
  • Data visulisation
  • EDA
  • Machin Learning
  • Deep Learning
  • NLP
  • Data science
  • ML Tutorial
  • Computer Vision
  • ML project
Open In App
Next Article:
numpy.stack() in Python
Next article icon

numpy.stack() in Python

Last Updated : 08 Aug, 2022
Comments
Improve
Suggest changes
Like Article
Like
Report

NumPy is a famous Python library used for working with arrays. One of the important functions of this library is stack().

Important points:

  • stack() is used for joining multiple NumPy arrays. Unlike, concatenate(), it joins arrays along a new axis. It returns a NumPy array.
  • to join 2 arrays, they must have the same shape and dimensions. (e.g. both (2,3)--> 2 rows,3 columns)
  • stack() creates a new array which has 1 more dimension than the input arrays. If we stack 2 1-D arrays, the resultant array will have 2 dimensions.

Syntax:  numpy.stack(arrays, axis=0, out=None)

Parameters:

  • arrays: Sequence of input arrays (required)
  • axis: Along this axis, in the new array, input arrays are stacked. Possible values are 0 to (n-1) positive integer for n-dimensional output array. For example, in the case of a resultant 2-D array, there are 2 possible axis options :0 and 1. axis=0 means 1D input arrays will be stacked row-wise. axis=1 means 1D input arrays will be stacked column-wise. We shall see the example later in detail. -1 means last dimension. e.g. for 2D arrays axis 1 and -1 are same. (optional)
  • out: The destination to place the resultant array.

Example #1 : stacking two 1d arrays

Python
import numpy as np  # input array a = np.array([1, 2, 3]) b = np.array([4, 5, 6])  # Stacking 2 1-d arrays c = np.stack((a, b),axis=0) print(c) 

output - 

array([[1, 2, 3],
      [4, 5, 6]])

  Notice, output is a 2-D array. They are stacked row-wise. Now, let's change the axis to 1.

Python
# stack 2 1-d arrays column-wise np.stack((a,b),axis=1) 

output - 

array([[1, 4],
      [2, 5],
      [3, 6]])

Here, stack() takes 2 1-D arrays and stacks them one after another as if it fills elements in new array column-wise.

Python
#stacking 2 arrays along -1 axis np.stack((a,b),axis=-1) 

 output -

array([[1, 4],
      [2, 5],
      [3, 6]])

-1 represents 'last dimension-wise'. Here 2 axis are possible. 0 and 1. So, -1 is same as 1.

Example #2 : stacking two 2d arrays

Python3
# input arrays x=np.array([[1,2,3],             [4,5,6]])  y=np.array([[7,8,9],             [10,11,12]]) 

1. stacking with axis=0

Python3
np.stack((x,y),axis=0) 

output - 

array([[[ 1,  2,  3],
       [ 4,  5,  6]],

      [[ 7,  8,  9],
       [10, 11, 12]]])

Imagine as if they are stacked one after another and made a 3-D array.

2. stacking with axis=1

Python3
np.stack((x,y),axis=1) 

Output - 3D array. 1st dimension has 1st rows. 2nd dimension has 2nd rows. [Row-wise stacking]

array([[[ 1,  2,  3],
       [ 7,  8,  9]],

      [[ 4,  5,  6],
       [10, 11, 12]]])

3. stacking with axis =2

Python3
np.stack((x,y),axis=2) 

Output - 3D array. 1st dimension has 1st rows. 2nd dimension has 2nd rows. [Column-wise stacking]

array([[[ 1,  7],
       [ 2,  8],
       [ 3,  9]],

      [[ 4, 10],
       [ 5, 11],
       [ 6, 12]]])

Example #2 : stacking more than two 2d arrays

1. with axis=0 : Just stacking. 

Python3
x=np.array([[1,2,3],             [4,5,6]]) y=np.array([[7,8,9],             [10,11,12]]) z=np.array([[13,14,15],             [16,17,18]])  np.stack((x,y,z),axis=0) 

 output - 

array([[[ 1,  2,  3],
       [ 4,  5,  6]],

      [[ 7,  8,  9],
       [10, 11, 12]],

      [[13, 14, 15],
       [16, 17, 18]]])

2. with axis =1 (row-wise stacking)

Python3
np.stack((x,y,z),axis=1) 

output - 

array([[[ 1,  2,  3],
       [ 7,  8,  9],
       [13, 14, 15]],

      [[ 4,  5,  6],
       [10, 11, 12],
       [16, 17, 18]]])

3. with axis =2 (column-wise stacking)

Python
np.stack((x,y,z),axis=2) 

output-

array([[[ 1,  7, 13],
       [ 2,  8, 14],
       [ 3,  9, 15]],

      [[ 4, 10, 16],
       [ 5, 11, 17],
       [ 6, 12, 18]]])

Example #3 : stacking two 3d arrays

1. axis=0. Just stacking

Python3
#2 input 3d arrays  m=np.array([[[1,2,3],             [4,5,6],             [7,8,9]],              [[10,11,12],             [13,14,15],             [16,17,18]]])  n=np.array([[[51,52,53],             [54,55,56],             [57,58,59]],              [[110,111,112],             [113,114,115],             [116,117,118]]])  # stacking np.stack((m,n),axis=0) 

 output - 

array([[[[  1,   2,   3],
        [  4,   5,   6],
        [  7,   8,   9]],

       [[ 10,  11,  12],
        [ 13,  14,  15],
        [ 16,  17,  18]]],


      [[[ 51,  52,  53],
        [ 54,  55,  56],
        [ 57,  58,  59]],

       [[110, 111, 112],
        [113, 114, 115],
        [116, 117, 118]]]])

2. with axis=1 

Python3
np.stack((m,n),axis=1) 

output - Imagine as if the resultant array takes 1st plane of each array for 1st dimension and so on.

array([[[[  1,   2,   3],
        [  4,   5,   6],
        [  7,   8,   9]],

       [[ 51,  52,  53],
        [ 54,  55,  56],
        [ 57,  58,  59]]],


      [[[ 10,  11,  12],
        [ 13,  14,  15],
        [ 16,  17,  18]],

       [[110, 111, 112],
        [113, 114, 115],
        [116, 117, 118]]]])

3. with axis = 2 

Python3
np.stack((m,n),axis=2) 

output - 

array([[[[  1,   2,   3],
        [ 51,  52,  53]],

       [[  4,   5,   6],
        [ 54,  55,  56]],

       [[  7,   8,   9],
        [ 57,  58,  59]]],


      [[[ 10,  11,  12],
        [110, 111, 112]],

       [[ 13,  14,  15],
        [113, 114, 115]],

       [[ 16,  17,  18],
        [116, 117, 118]]]])

4. with axis = 3

Python3
np.stack((m,n),axis=3) 

output - 

array([[[[  1,  51],
        [  2,  52],
        [  3,  53]],

       [[  4,  54],
        [  5,  55],
        [  6,  56]],

       [[  7,  57],
        [  8,  58],
        [  9,  59]]],


      [[[ 10, 110],
        [ 11, 111],
        [ 12, 112]],

       [[ 13, 113],
        [ 14, 114],
        [ 15, 115]],

       [[ 16, 116],
        [ 17, 117],
        [ 18, 118]]]])


Next Article
numpy.stack() in Python

J

jana_sayantan
Improve
Article Tags :
  • Python
  • Python-numpy
  • Python numpy-arrayManipulation
Practice Tags :
  • python

Similar Reads

    numpy.vstack() in python
    numpy.vstack() is a function in NumPy used to stack arrays vertically (row-wise). It takes a sequence of arrays as input and returns a single array by stacking them along the vertical axis (axis 0).Example: Vertical Stacking of 1D Arrays Using numpy.vstack()Pythonimport numpy as geek a = geek.array(
    2 min read
    numpy.column_stack() in Python
    numpy.column_stack() function is used to stack 1-D arrays as columns into a 2-D array.It takes a sequence of 1-D arrays and stack them as columns to make a single 2-D array. 2-D arrays are stacked as-is, just like with hstack function. Syntax : numpy.column_stack(tup) Parameters : tup : [sequence of
    2 min read
    numpy.ma.row_stack() in Python
    numpy.ma.row_stack() : This function helps stacking arrays row wise in sequence vertically manner. Parameters : tup : sequence of ndarrays. 1D arrays must have same length, arrays must have the same shape along with all the axis. Result : Row-wise stacked arrays Code #1: Explaining row_stack() Pytho
    1 min read
    Stack in Python
    A stack is a linear data structure that stores items in a Last-In/First-Out (LIFO) or First-In/Last-Out (FILO) manner. In stack, a new element is added at one end and an element is removed from that end only. The insert and delete operations are often called push and pop. The functions associated wi
    8 min read
    numpy.add() in Python
    NumPy, the Python powerhouse for scientific computing, provides an array of tools to efficiently manipulate and analyze data. Among its key functionalities lies numpy.add() a potent function that performs element-wise addition on NumPy arrays. numpy.add() SyntaxSyntax : numpy.add(arr1, arr2, /, out=
    4 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences