Python – Sort by Uppercase Frequency
Last Updated : 08 Mar, 2023
Given a list of strings, perform sorting by frequency of uppercase characters.
Input : test_list = [“Gfg”, “is”, “FoR”, “GEEKS”]
Output : [‘is’, ‘Gfg’, ‘FoR’, ‘GEEKS’]
Explanation : 0, 1, 2, 5 uppercase letters in strings respectively.
Input : test_list = [“is”, “GEEKS”]
Output : [‘is’, ‘GEEKS’]
Explanation : 0, 5 uppercase letters in strings respectively.
Method #1 : Using sort() + isupper()
In this, we perform task of checking for uppercase using isupper(), and sort() to perform task of sorting.
Python3
def upper_sort(sub): return len ([ele for ele in sub if ele.isupper()]) test_list = [ "Gfg" , "is" , "BEST" , "FoR" , "GEEKS" ] print ( "The original list is: " + str (test_list)) test_list.sort(key = upper_sort) print ( "Elements after uppercase sorting: " + str (test_list)) |
Output The original list is: ['Gfg', 'is', 'BEST', 'FoR', 'GEEKS'] Elements after uppercase sorting: ['is', 'Gfg', 'FoR', 'BEST', 'GEEKS']
Time Complexity: O(n*nlogn), where n is the length of the input list. This is because we’re using the built-in sorted() function which has a time complexity of O(nlogn) in the worst case and isupper has a time complexity of O(n) in the worst case.
Auxiliary Space: O(1), as we’re not using any additional space other than the input list itself.
Method #2 : Using sorted() + lambda function
In this, we perform the task of sorting using sorted(), and lambda function is used rather than external sort() function to perform task of sorting.
Python3
test_list = [ "Gfg" , "is" , "BEST" , "FoR" , "GEEKS" ] print ( "The original list is: " + str (test_list)) res = sorted (test_list, key = lambda sub: len ( [ele for ele in sub if ele.isupper()])) print ( "Elements after uppercase sorting: " + str (res)) |
Output The original list is: ['Gfg', 'is', 'BEST', 'FoR', 'GEEKS'] Elements after uppercase sorting: ['is', 'Gfg', 'FoR', 'BEST', 'GEEKS']
Method #3 : Using Counter
This approach uses the Counter method from the collections module to get the frequency count of uppercase letters in each string and then uses the sorted method to sort the list based on these counts.
Python3
from collections import Counter test_list = [ "Gfg" , "is" , "BEST" , "FoR" , "GEEKS" ] print ( "The original list is: " + str (test_list)) uppercase_counts = [Counter(string)[ 'A' ] + Counter(string)[ 'B' ] + Counter(string)[ 'C' ] + Counter(string)[ 'D' ] + Counter(string)[ 'E' ] + Counter(string)[ 'F' ] + Counter(string)[ 'G' ] + Counter(string)[ 'H' ] + Counter(string)[ 'I' ] + Counter(string)[ 'J' ] + Counter(string)[ 'K' ] + Counter(string)[ 'L' ] + Counter(string)[ 'M' ] + Counter(string)[ 'N' ] + Counter(string)[ 'O' ] + Counter(string)[ 'P' ] + Counter(string)[ 'Q' ] + Counter(string)[ 'R' ] + Counter(string)[ 'S' ] + Counter(string)[ 'T' ] + Counter(string)[ 'U' ] + Counter(string)[ 'V' ] + Counter(string)[ 'W' ] + Counter(string)[ 'X' ] + Counter(string)[ 'Y' ] + Counter(string)[ 'Z' ] for string in test_list] res = [x for _, x in sorted ( zip (uppercase_counts, test_list))] print ( "Elements after uppercase sorting: " + str (res)) |
Output The original list is: ['Gfg', 'is', 'BEST', 'FoR', 'GEEKS'] Elements after uppercase sorting: ['is', 'Gfg', 'FoR', 'BEST', 'GEEKS']
Time Complexity: O(n^2), as for each string in the list, we are checking the frequency of uppercase letters in that string using the Counter method which takes O(n) time, and we are doing it for n strings. So, the total time complexity will be O(n^2).
Auxiliary Space: O(n), as we are using a list of size n to store the uppercase frequency count for each string.
Method#4: using re module
Step-by-step algorithm:
- Define a list of strings to be sorted.
- Define a function uppercase_frequency() that takes a string as input and returns the frequency of uppercase characters in the string. This is done using the findall() function from the re module to find all uppercase letters in the string, and then using the len() function to count the number of matches.
- Use the sorted() function to sort the list of strings based on the result of the uppercase_frequency() function. The key parameter is set to the uppercase_frequency() function to indicate that the sorting should be done based on the result of this function for each string.
- Print the original list and the sorted list.
Python3
import re test_list = [ "Gfg" , "is" , "BEST" , "FoR" , "GEEKS" ] def uppercase_frequency(s): return len (re.findall(r '[A-Z]' , s)) sorted_list = sorted (test_list, key = uppercase_frequency) print ( "The original list is: " + str (test_list)) print ( "Elements after uppercase sorting: " + str (sorted_list)) |
Output The original list is: ['Gfg', 'is', 'BEST', 'FoR', 'GEEKS'] Elements after uppercase sorting: ['is', 'Gfg', 'FoR', 'BEST', 'GEEKS']
Time complexity:
The time complexity of the uppercase_frequency() function is O(n), where n is the length of the input string, since it uses the findall() function to search the entire string for uppercase letters. The time complexity of the sorted() function is O(n log n), where n is the length of the list, since it performs a comparison-based sort. Therefore, the overall time complexity of the code is O(n log n).
Auxiliary space:
The auxiliary space complexity of the uppercase_frequency() function is O(n), where n is the length of the input string, since it creates a list of all uppercase letters in the string. The sorted() function uses O(log n) space for the recursive calls in the sorting algorithm, but this is negligible compared to the space used by the input list and the uppercase_frequency() function. Therefore, the overall auxiliary space complexity of the code is O(n).
Similar Reads
Python - Assign Frequency to Tuples
Given tuple list, assign frequency to each tuple in list. Input : test_list = [(6, 5, 8), (2, 7), (6, 5, 8), (9, ), (2, 7)] Output : [(6, 5, 8, 2), (2, 7, 2), (9, 1)] Explanation : (2, 7) occurs 2 times, hence 2 is append in tuple.Input : test_list = [(2, 7), (2, 7), (6, 5, 8), (9, ), (2, 7)] Output
8 min read
Python - Sort rows by Frequency of K
Given a Matrix, the task is to write a Python program to perform sorting on rows depending on the frequency of K. Input : test_list = [[10, 2, 3, 2, 3], [5, 5, 4, 7, 7, 4], [1, 2], [1, 1, 2, 2, 2]], K = 2 Output : [[5, 5, 4, 7, 7, 4], [1, 2], [10, 2, 3, 2, 3], [1, 1, 2, 2, 2]] Explanation : 0 < 1
4 min read
Python - Every Kth Strings Uppercase
Given a String list, change every Kth string to uppercase. Input : test_list = ["gfg", "is", "best", "for", "geeks"], K = 3 Output : ['GFG', 'is', 'best', 'FOR', 'geeks'] Explanation : All Kth strings are uppercased. Input : test_list = ["gfg", "is", "best", "for", "geeks"], K = 4 Output : ['GFG', '
4 min read
Python - Uppercase Half String
The problem is to convert half of a string to uppercase, either the first half or the second half, depending on the requirement. For example, given the string "python", the output could be "PYThon" (uppercase first half) or "pytHON" (uppercase second half). If the string length is odd, handle the mi
2 min read
Sort List Elements by Frequency - Python
Our task is to sort the list based on the frequency of each element. In this sorting process, elements that appear more frequently will be placed before those with lower frequency. For example, if we have: a = ["Aryan", "Harsh", "Aryan", "Kunal", "Harsh", "Aryan"] then the output should be: ['Aryan'
3 min read
Python - Bigrams Frequency in String
Sometimes while working with Python Data, we can have problem in which we need to extract bigrams from string. This has application in NLP domains. But sometimes, we need to compute the frequency of unique bigram for data collection. The solution to this problem can be useful. Lets discuss certain w
4 min read
Python - Sort Strings by maximum frequency character
Given a string, the task is to write a Python program to perform sort by maximum occurring character. Input : test_list = ["geekforgeeks", "bettered", "for", "geeks"] Output : ['for', 'geeks', 'bettered', 'geekforgeeks'] Explanation : 1 < 2 < 3 < 4, is ordering of maximum character occurren
3 min read
Python - Sort Strings by Case difference
Given Strings List, the task is to write a Python program to perform sort on basis of difference of cases i.e count of lower case and upper case. Examples: Input : test_list = ["GFG", "GeeKs", "best", "FOr", "alL", "GEEKS"] Output : ['GeeKs', 'FOr', 'alL', 'GFG', 'best', 'GEEKS'] Explanation : ees(3
6 min read
Python - Successive Characters Frequency
Sometimes, while working with Python strings, we can have a problem in which we need to find the frequency of next character of a particular word in string. This is quite unique problem and has the potential for application in day-day programming and web development. Let's discuss certain ways in wh
6 min read
Python - All substrings Frequency in String
Given a String, extract all unique substrings with their frequency. Input : test_str = "ababa" Output : {'a': 3, 'ab': 2, 'aba': 2, 'abab': 1, 'ababa': 1, 'b': 2, 'ba': 2, 'bab': 1, 'baba': 1} Explanation : All substrings with their frequency extracted. Input : test_str = "GFGF" Output : {'G': 2, 'G
5 min read