Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
    • Practice Coding Problems
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Data preprocessing
  • Data Manipulation
  • Data Analysis using Pandas
  • EDA
  • Pandas Exercise
  • Pandas AI
  • Numpy
  • Matplotlib
  • Plotly
  • Data Analysis
  • Machine Learning
  • Data science
Open In App
Next Article:
Python | Pandas Series.cov() to find Covariance
Next article icon

Python | Pandas Series.cov() to find Covariance

Last Updated : 08 Oct, 2021
Comments
Improve
Suggest changes
Like Article
Like
Report

Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric Python packages. Pandas is one of those packages and makes importing and analyzing data much easier.

Pandas Series.cov() is used to find covariance of two series. In the following example, covariance is found using both Pandas method and manually ways and the answers are then compared.

To learn more about Covariance, click here.

Syntax: Series.cov(other, min_periods=None)
Parameters: 
other: Other series to be used in finding covariance 
min_periods: Minimum number of observations to be taken to have a valid result
Return type: Float value, Returns covariance of caller series and passed series 

Example :
In this example, two lists are made and converted to series using Pandas .Series() method. The average if both series is found and a function is created to find Covariance manually. Pandas .cov() is also applied and results from both ways are stored in variables and printed to compare the outputs.

Python3
import pandas as pd  # list  1 a = [2, 3, 2.7, 3.2, 4.1]  # list 2 b = [10, 14, 12, 15, 20]  # storing average of a av_a = sum(a)/len(a)  # storing average of b av_b = sum(b)/len(b)  # making series from list a a = pd.Series(a)  # making series from list b b = pd.Series(b)     # covariance through pandas method covar = a.cov(b)   # finding covariance manually def covarfn(a, b, av_a, av_b):     cov = 0      for i in range(0, len(a)):         cov += (a[i] - av_a) * (b[i] - av_b)     return (cov / (len(a)-1))  # calling function cov = covarfn(a, b, av_a, av_b)  # printing results print("Results from Pandas method: ", covar) print("Results from manual function method: ", cov) 

Output: 

As it can be seen in output, the output from both ways is same. Hence this method is useful when finding co variance for large series.

Results from Pandas method:  2.8499999999999996 Results from manual function method:  2.8499999999999996


 


Next Article
Python | Pandas Series.cov() to find Covariance

K

Kartikaybhutani
Improve
Article Tags :
  • Python
  • Python-pandas
  • Python pandas-series
  • Python pandas-series-methods
Practice Tags :
  • python

Similar Reads

    Python | Pandas Series.to_frame()
    Pandas series is a One-dimensional ndarray with axis labels. The labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index. Pandas Series.to_frame() function is used t
    3 min read
    Python | Pandas Series.to_dict()
    Pandas series is a One-dimensional ndarray with axis labels. The labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index. Pandas Series.to_dict() function is used to
    3 min read
    Python | Pandas Series.corr()
    Pandas series is a One-dimensional ndarray with axis labels. The labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index. Pandas Series.corr() function compute the c
    3 min read
    Python | Pandas Dataframe/Series.dot()
    Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric Python packages. Pandas is one of those packages and makes importing and analyzing data much easier.  Pandas Series.dot()The dot() method is used to compute the dot product between DataFr
    6 min read
    Python | Pandas Series.from_array()
    Pandas series is a One-dimensional ndarray with axis labels. The labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index. Pandas Series.from_array() function constru
    2 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences