Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • Data preprocessing
  • Data Manipulation
  • Data Analysis using Pandas
  • EDA
  • Pandas Exercise
  • Pandas AI
  • Numpy
  • Matplotlib
  • Plotly
  • Data Analysis
  • Machine Learning
  • Data science
Open In App
Next Article:
Python | Pandas MultiIndex.from_tuples()
Next article icon

Python | Pandas MultiIndex.from_product()

Last Updated : 24 Dec, 2018
Comments
Improve
Suggest changes
Like Article
Like
Report

Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier.

Pandas MultiIndex.from_product() function make a MultiIndex from the cartesian product of multiple iterables.

Syntax: MultiIndex.from_product(iterables, sortorder=None, names=None)

Parameters :
iterables : Each iterable has unique labels for each level of the index.
sortorder : Level of sortedness (must be lexicographically sorted by that level).
names : Names for the levels in the index.

Returns: index : MultiIndex

Example #1: Use MultiIndex.from_product() function to construct a MultiIndex from the cartesian product of multiple iterables.




# importing pandas as pd
import pandas as pd
  
# Create the first iterable
Price =[20, 35, 60, 85]
  
# Create the second iterable
Name =['Vanilla', 'Strawberry']
  
# Print the first iterable
print(Price)
  
# Print the second iterable
print("\n", Name)
 
 

Output :

Now let’s create the MultiIndex using the above two iterables.




# Creating the MultiIndex
midx = pd.MultiIndex.from_product([Name, Price],
                       names =['Name', 'Price'])
  
# Print the MultiIndex
print(midx)
 
 

Output :

As we can see in the output, the function has created a MultiIndex object using the cartesian product of these two iterables.
 
Example #2: Use MultiIndex.from_product() function to construct a MultiIndex from the cartesian product of multiple iterables.




# importing pandas as pd
import pandas as pd
  
# Create the first iterable
Snake =['Viper', 'Cobra']
  
# Create the second iterable
Variety =['Brown', 'Yellow', 'Black']
  
# Print the first iterable
print(Snake)
  
# Print the second iterable
print("\n", Variety)
 
 

Output :

Now let’s create the MultiIndex using the above two iterables.




# Creating the MultiIndex
midx = pd.MultiIndex.from_product([Snake, Variety], 
                       names =['Snake', 'Variety'])
  
# Print the MultiIndex
print(midx)
 
 

Output :

The function has created a MultiIndex using the two iterables.



Next Article
Python | Pandas MultiIndex.from_tuples()

S

Shubham__Ranjan
Improve
Article Tags :
  • Python
  • Python pandas-multiIndex
  • Python-pandas
Practice Tags :
  • python

Similar Reads

  • Python | Pandas MultiIndex.to_frame()
    Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier. Pandas MultiIndex.to_frame() function create a DataFrame with the levels of the MultiI
    2 min read
  • Python | Pandas MultiIndex.from_tuples()
    Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier. Pandas MultiIndex.from_tuples() function is used to convert list of tuples to MultiInd
    2 min read
  • Python | Pandas MultiIndex.from_arrays()
    Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier. Pandas MultiIndex.from_arrays() function is used to convert arrays into MultiIndex. It
    2 min read
  • Python | Pandas dataframe.product()
    Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier. Pandas dataframe.product() function return the value of the product for the requested
    2 min read
  • Python | Pandas MultiIndex.droplevel()
    Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier. Pandas MultiIndex.droplevel() function return Index with requested level removed. If M
    2 min read
  • Python | Pandas MultiIndex.names
    Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier. Pandas MultiIndex.names attribute returns the names of levels in the MultiIndex. Synta
    2 min read
  • Python | Pandas dataframe.prod()
    Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier. Pandas dataframe.prod() function return the value of the product for the requested axi
    2 min read
  • Python | Pandas MultiIndex.levshape
    Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier. Pandas MultiIndex.levshape attribute outputs a tuple containing the length of each lev
    2 min read
  • Python | Pandas Index.to_frame()
    Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier. Pandas Index.to_frame() function create a dataFrame from the given index with a column
    2 min read
  • Python | Pandas MultiIndex.nlevels
    Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier. Pandas MultiIndex.nlevels attribute returns the integer number of levels in the MultiI
    2 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences