Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • Data preprocessing
  • Data Manipulation
  • Data Analysis using Pandas
  • EDA
  • Pandas Exercise
  • Pandas AI
  • Numpy
  • Matplotlib
  • Plotly
  • Data Analysis
  • Machine Learning
  • Data science
Open In App
Next Article:
Python | Pandas MultiIndex.set_labels()
Next article icon

Python | Pandas MultiIndex.droplevel()

Last Updated : 24 Dec, 2018
Comments
Improve
Suggest changes
Like Article
Like
Report
Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier. Pandas MultiIndex.droplevel() function return Index with requested level removed. If MultiIndex has only 2 levels, the result will be of Index type not MultiIndex..
Syntax: MultiIndex.droplevel(level=0) Parameters : level : int/level name or list thereof Returns : index : Index or MultiIndex
Example #1: Use MultiIndex.droplevel() function to drop the 0th level of the MultiIndex. Python3
# importing pandas as pd import pandas as pd  # Create the MultiIndex midx = pd.MultiIndex.from_arrays([['Networking', 'Cryptography',                                       'Anthropology', 'Science'],                                               [88, 84, 98, 95]])  # Print the MultiIndex print(midx) 
Output : Now let's drop the 0th level of the MultiIndex. Python3
# drop the 0th level. midx.droplevel(level = 0) 
Output : As we can see in the output, the function has dropped the 0th level and returned an Index object.   Example #2: Use MultiIndex.droplevel() function to drop the 1st level of the MultiIndex. Python3
# importing pandas as pd import pandas as pd  # Create the MultiIndex midx = pd.MultiIndex.from_arrays([['Networking', 'Cryptography',                                      'Anthropology', 'Science'],                                               [88, 84, 98, 95]])  # Print the MultiIndex print(midx) 
Output : Now let's drop the 1st level of the MultiIndex. Python3
# drop the 1st level. midx.droplevel(level = 1) 
Output : As we can see in the output, the function has dropped the 1st level and returned an Index object.

Next Article
Python | Pandas MultiIndex.set_labels()

S

Shubham__Ranjan
Improve
Article Tags :
  • Technical Scripter
  • Python
  • Python-pandas
  • Python pandas-multiIndex
Practice Tags :
  • python

Similar Reads

  • Python | Pandas MultiIndex.levshape
    Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier. Pandas MultiIndex.levshape attribute outputs a tuple containing the length of each lev
    2 min read
  • Python | Pandas Index.drop()
    Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier. Pandas Index.drop() function make new Index with passed list of labels deleted. The fu
    2 min read
  • Python | Pandas MultiIndex.reorder_levels()
    Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier. Pandas MultiIndex.reorder_levels() function is used to rearrange levels using input or
    2 min read
  • Python | Pandas MultiIndex.to_frame()
    Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier. Pandas MultiIndex.to_frame() function create a DataFrame with the levels of the MultiI
    2 min read
  • Python | Pandas MultiIndex.set_labels()
    Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier.Pandas MultiIndex.set_labels() function set new labels on MultiIndex. Defaults to retur
    2 min read
  • Python | Pandas Index.delete()
    Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier. Pandas Index.delete() function returns a new object with the passed locations deleted.
    2 min read
  • Python | Pandas Index.dropna()
    Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier. Pandas Index.dropna() function return Index without NA/NaN values. All the missing val
    2 min read
  • Python | Pandas MultiIndex.is_lexsorted()
    Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier. Pandas MultiIndex.is_lexsorted() function return True if the labels are lexicographica
    2 min read
  • Python | Pandas Index.drop_duplicates()
    Pandas Index.drop_duplicates() function return Index with duplicate values removed in Python. Syntax of Pandas Index.drop_duplicates() Syntax: Index.drop_duplicates(labels, errors='raise')  Parameters : keep : {‘first’, ‘last’, False} ‘first’ : Drop duplicates except for the first occurrence.(defaul
    2 min read
  • Python | Pandas Index.dtype
    Pandas Index is an immutable ndarray implementing an ordered, sliceable set. It is the basic object which stores the axis labels for all pandas objects. Pandas Index.dtype attribute return the data type (dtype) of the underlying data of the given Index object. Syntax: Index.dtype Parameter : None Re
    2 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences