Python | Pandas.factorize() Last Updated : 27 Sep, 2018 Comments Improve Suggest changes Like Article Like Report pandas.factorize() method helps to get the numeric representation of an array by identifying distinct values. This method is available as both pandas.factorize() and Series.factorize(). Parameters: values : 1D sequence. sort : [bool, Default is False] Sort uniques and shuffle labels. na_sentinel : [ int, default -1] Missing Values to mark 'not found'. Return: Numeric representation of array Code: Explaining the working of factorize() method Python3 1== # importing libraries import numpy as np import pandas as pd from pandas.api.types import CategoricalDtype labels, uniques = pd.factorize(['b', 'd', 'd', 'c', 'a', 'c', 'a', 'b']) print("Numeric Representation : \n", labels) print("Unique Values : \n", uniques) Python3 1== # sorting the numerics label1, unique1 = pd.factorize(['b', 'd', 'd', 'c', 'a', 'c', 'a', 'b'], sort = True) print("\n\nNumeric Representation : \n", label1) print("Unique Values : \n", unique1) Python3 1== # Missing values indicated label2, unique2 = pd.factorize(['b', None, 'd', 'c', None, 'a', ], na_sentinel = -101) print("\n\nNumeric Representation : \n", label2) print("Unique Values : \n", unique2) Python3 1== # When factorizing pandas object; unique will differ a = pd.Categorical(['a', 'a', 'c'], categories =['a', 'b', 'c']) label3, unique3 = pd.factorize(a) print("\n\nNumeric Representation : \n", label3) print("Unique Values : \n", unique3) Comment More infoAdvertise with us Next Article Python | Pandas.factorize() M mohit gupta_omg :) Follow Improve Article Tags : Python Python-pandas Python pandas-series Python pandas-series-methods Practice Tags : python Similar Reads Python | Pandas Index.factorize() Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier. Pandas Index.factorize() function encode the object as an enumerated type or categoric 2 min read Python | Pandas Series.factorize() Pandas series is a One-dimensional ndarray with axis labels. The labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index. Pandas Series.factorize() function encode t 2 min read Python | Pandas TimedeltaIndex.factorize Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier. Pandas TimedeltaIndex.factorize() function encode the elements of the given TimedeltaI 2 min read Python | Pandas.melt() To make the analysis of data in a table easier, we can reshape the data into a more computer-friendly form using Pandas in Python. Pandas.melt() is one of the functions to do so.. Pandas.melt() unpivots a DataFrame from wide format to long format. Pandas melt() function is useful to massage a DataFr 3 min read Python | Pandas dataframe.pow() Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier. Pandas dataframe.pow() function calculates the exponential power of dataframe and othe 3 min read Like