Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • Numpy exercise
  • pandas
  • Matplotlib
  • Data visulisation
  • EDA
  • Machin Learning
  • Deep Learning
  • NLP
  • Data science
  • ML Tutorial
  • Computer Vision
  • ML project
Open In App
Next Article:
Python | Numpy matrix.sum()
Next article icon

Python | Numpy matrix.tobytes()

Last Updated : 29 May, 2019
Comments
Improve
Suggest changes
Like Article
Like
Report
With the help of Numpy matrix.tobytes() method, we can find the byte code for the matrix by using the matrix.tobytes() method.
Syntax : matrix.tobytes() Return : Return byte code for matrix
Example #1 : In this example we can see that by using matrix.tobytes() method we are able to find the byte code for the given matrix. Python3 1==
# import the important module in python import numpy as np              # make matrix with numpy gfg = np.matrix('[4, 1; 12, 3]')              # applying matrix.tobytes() method geek = gfg.tobytes()    print(geek) 
Output:
b'\x04\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x0c\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00'
Example #2 : Python3 1==
# import the important module in python import numpy as np              # make matrix with numpy gfg = np.matrix('[4, 1, 9; 12, 3, 1; 4, 5, 6]')              # applying matrix.tobytes() method geek = gfg.tobytes()    print(geek) 
Output:
b'\x04\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\t\x00\x00\x00\x00\x00\x00\x00\x0c\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x05\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00'

Next Article
Python | Numpy matrix.sum()

J

Jitender_1998
Improve
Article Tags :
  • Python
  • Python-numpy
  • Python numpy-Matrix Function
Practice Tags :
  • python

Similar Reads

  • Python | Numpy matrix.tolist()
    With the help of Numpy matrix.tolist() method, we are able to convert the matrix into a list by using the matrix.tolist() method. Syntax: matrix.tolist() Return : Return a new list Example #1 : In this example we can see that by passing the matrix we are able to convert it into list by using the mat
    1 min read
  • Python | Numpy matrix.take()
    With the help of Numpy matrix.take() method, we can select the elements from a given matrix by passing the parameter as index value of that element. It will return a matrix having one dimension. Remember it will work for one axis at a time. Syntax : matrix.take(index, axis) Return : Return matrix of
    1 min read
  • Python | Numpy matrix.tostring()
    With the help of Numpy matrix.tostring() method, we can find the byte code in string format for the matrix by using the matrix.tostring() method. Syntax : matrix.tostring() Return : Return byte code string for matrix Example #1 : In this example we can see that by using matrix.tostring() method we a
    1 min read
  • Python | Numpy matrix.sum()
    With the help of matrix.sum() method, we are able to find the sum of values in a matrix by using the same method. Syntax : matrix.sum() Return : Return sum of values in a matrix Example #1 : In this example we are able to find the sum of values in a matrix by using matrix.sum() method. # import the
    1 min read
  • Python | Numpy matrix.transpose()
    With the help of Numpy matrix.transpose() method, we can find the transpose of the matrix by using the matrix.transpose()method in Python. Numpy matrix.transpose() Syntax Syntax : matrix.transpose() Parameter: No parameters; transposes the matrix it is called on. Return : Return transposed matrix Wh
    3 min read
  • Python | Numpy matrix.round()
    With the help of Numpy matrix.round() method, we are able to round off the values of the given matrix. Syntax : matrix.round() Return : Return rounded values in matrix Example #1 : In the given example we are able to round off the given matrix by using matrix.round() method. # import the important m
    1 min read
  • numpy.matrix() in Python
    This class returns a matrix from a string of data or array-like object. Matrix obtained is a specialised 2D array. Syntax : numpy.matrix(data, dtype = None) : Parameters : data : data needs to be array-like or string dtype : Data type of returned array. Returns : data interpreted as a matrix # Pytho
    1 min read
  • Python | Numpy numpy.matrix.T()
    With the help of Numpy numpy.matrix.T() method, we can make a Transpose of any matrix either having dimension one or more than more. Syntax : numpy.matrix.T() Return : Return transpose of every matrix Example #1 : In this example we can see that with the help of matrix.T() method, we are able to tra
    1 min read
  • numpy.asmatrix() in Python
    numpy.asmatrix(data, dtype = None) Returns a matrix by interpreting the input as a matrix. Parameters : data : array-like input data dtype : Data type of returned array Returns : Interprets the input as a matrix # Python Programming illustrating # numpy.asmatrix import numpy as geek # array-like inp
    1 min read
  • Numpy ndarray.tobytes() function | Python
    numpy.ndarray.tobytes() function construct Python bytes containing the raw data bytes in the array. Syntax : numpy.ndarray.tobytes(order='C') Parameters : order : [{‘C’, ‘F’, None}, optional] Order of the data for multidimensional arrays: C, Fortran, or the same as for the original array. Return : P
    1 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences