Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • Numpy exercise
  • pandas
  • Matplotlib
  • Data visulisation
  • EDA
  • Machin Learning
  • Deep Learning
  • NLP
  • Data science
  • ML Tutorial
  • Computer Vision
  • ML project
Open In App
Next Article:
Python | Numpy np.assert_approx_equal() method
Next article icon

Python | numpy.assert_allclose() method

Last Updated : 17 Sep, 2019
Comments
Improve
Suggest changes
Like Article
Like
Report

With the help of numpy.assert_allclose() method, we can get the assertion errors when two array objects are not equal upto the mark by using numpy.assert_allclose().

Syntax : numpy.assert_allclose(actual_array, desired_array)

Return : Return the Assertion error if two array objects are not equal.

Example #1 :
In this example we can see that using numpy.assert_allclose() method, we are able to get the assertion error if two arrays are not equal.




# import numpy
import numpy as np
  
# using numpy.assert_allclose() method
gfg1 = [1, 2, 3]
gfg2 = np.array(gfg1)
  
if np.testing.assert_allclose(gfg1, gfg2):
     print("Matched")
 
 

Output :

Matched

Example #2 :




# import numpy
import numpy as np
  
# using numpy.assert_allclose() method
gfg1 = [1, 2, 3]
gfg2 = np.array([4, 5, 6])
  
print(np.testing.assert_allclose(gfg1, gfg2))
 
 

Output :

Mismatch: 100%
Max absolute difference: 3
Max relative difference: 0.75
gfg1: array([1, 2, 3])
gfg2: array([4, 5, 6])



Next Article
Python | Numpy np.assert_approx_equal() method

J

Jitender_1998
Improve
Article Tags :
  • Python
  • Python-numpy
Practice Tags :
  • python

Similar Reads

  • Python | Numpy np.assert_almost_equal() method
    With the help of np.assert_almost_equal() method, we can get the assertion error if two items are not equal up to desired precision value by using np.assert_almost_equal() method. Syntax : np.assert_almost_equal(actual, desired, decimal) Return : Return the assertion error if two values are not equa
    1 min read
  • numpy.allclose() in Python
    numpy.allclose() function is used to find if two arrays are element-wise equal within a tolerance. The tolerance values are positive, typically very small numbers. The relative difference (rtol * abs(arr2)) and the absolute difference atol are added together to compare against the absolute differenc
    3 min read
  • Python | Numpy np.assert_array_almost_equal() method
    With the help of np.assert_array_almost_equal() method, we can get the assertion error if two array objects are not equal up to desired precision value by using np.assert_array_almost_equal() method. Syntax : np.assert_array_almost_equal(actual, desired, decimal) Return : Return the assertion error
    1 min read
  • Python | Numpy np.assert_approx_equal() method
    With the help of np.assert_approx_equal() method, we can get the assertion error if two items are not equal up to significant digits by using np.assert_approx_equal() method. Syntax : np.assert_approx_equal(actual, desired, significant) Return : Return the assertion error if two values are not equal
    1 min read
  • Python | Numpy np.assert_array_less() method
    With the help of np.assert_array_less() method, we can get the assertion error if two array like objects are not ordered by less than by using np.assert_array_less() method. Syntax : np.assert_array_less(x, y) Return : Return assertion error if two array objects are unequal. Example #1 : In this exa
    1 min read
  • numpy.ma.allclose() function - Python
    numpy.ma.allclose() function returns True if two arrays are element-wise equal within a tolerance. This function is equivalent to allclose except that masked values are treated as equal (default) or unequal, depending on the masked_equal argument. Syntax : numpy.ma.allclose(a, b, masked_equal = True
    2 min read
  • Python | Numpy np.assert_equal() method
    With the help of np.assert_equal() method, we can get the assertion error when two objects are not equal by using np.assert_equal() method. Syntax : np.assert_equal(actual, desired) Return : Return assertion error if two object are unequal. Example #1 : In this example we can see that by using np.as
    1 min read
  • Python | Numpy np.assert_array_equal() method
    With the help of np.assert_array_equal() method, we can get the assertion error if two array like objects are not equal by using np.assert_array_equal() method. Syntax : np.assert_array_equal(x, y) Return : Return the assertion error if two objects are not equal. Example #1 : In this example we can
    1 min read
  • Python | numpy.lookfor() method
    With the help of numpy.lookfor() method, we can get the information about the module in the numpy by using numpy.lookfor() method. Syntax : numpy.lookfor(module_name) Return : Return the information about the module. Example #1 : In this example we can see that by using numpy.lookfor() method, we ar
    1 min read
  • Python | Numpy np.legzero() method
    np.legzero() method can be used instead of np.zeros for creating a array whose elements are 0. Syntax : np.legzero() Return : Return array([0]) Example #1 : # Python program explaining # numpy.legzero() method # import numpy and legzero import numpy as np from numpy.polynomial.legendre import legzer
    1 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences