Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • DSA
  • Interview Problems on DP
  • Practice DP
  • MCQs on DP
  • Tutorial on Dynamic Programming
  • Optimal Substructure
  • Overlapping Subproblem
  • Memoization
  • Tabulation
  • Tabulation vs Memoization
  • 0/1 Knapsack
  • Unbounded Knapsack
  • Subset Sum
  • LCS
  • LIS
  • Coin Change
  • Word Break
  • Egg Dropping Puzzle
  • Matrix Chain Multiplication
  • Palindrome Partitioning
  • DP on Arrays
  • DP with Bitmasking
  • Digit DP
  • DP on Trees
  • DP on Graph
Open In App
Next Article:
C++ Program For Fibonacci Numbers
Next article icon

Nth Fibonacci Number

Last Updated : 15 Apr, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report
Try it on GfG Practice
redirect icon

Given a positive integer n, the task is to find the nth Fibonacci number.

The Fibonacci sequence is a sequence where the next term is the sum of the previous two terms. The first two terms of the Fibonacci sequence are 0 followed by 1. The Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21

Example:

Input: n = 2
Output: 1
Explanation: 1 is the 2nd number of Fibonacci series.

Input: n = 5
Output: 5
Explanation: 5 is the 5th number of Fibonacci series.

Table of Content

  • [Naive Approach] Using Recursion – O(2^n) time and O(n) space
  • [Expected Approach-1] Memoization Approach – O(n) time and O(n) space
  • [Expected Approach-2] Bottom-Up Approach – O(n) time and O(n) space
  • [Expected Approach-3] Space Optimized Approach – O(n) time and O(1) space
  • Using Matrix Exponentiation – O(log(n)) time and O(log(n)) space
  • [Other Approach] Using Golden ratio

[Naive Approach] Using Recursion

We can use recursion to solve this problem because any Fibonacci number n depends on previous two Fibonacci numbers. Therefore, this approach repeatedly breaks down the problem until it reaches the base cases.

Recurrence relation:

  • Base case: F(n) = n, when n = 0 or n = 1
  • Recursive case: F(n) = F(n-1) + F(n-2) for n>1
C++
#include <bits/stdc++.h> using namespace std;  // Function to calculate the nth Fibonacci number using recursion int nthFibonacci(int n){      // Base case: if n is 0 or 1, return n     if (n <= 1){         return n;     }      // Recursive case: sum of the two preceding Fibonacci numbers     return nthFibonacci(n - 1) + nthFibonacci(n - 2); }  int main(){     int n = 5;     int result = nthFibonacci(n);     cout << result << endl;      return 0; } 
C
#include <stdio.h>  // Function to calculate the nth Fibonacci number using recursion int nthFibonacci(int n){     // Base case: if n is 0 or 1, return n     if (n <= 1){         return n;     }     // Recursive case: sum of the two preceding Fibonacci numbers     return nthFibonacci(n - 1) + nthFibonacci(n - 2); }  int main(){     int n = 5;     int result = nthFibonacci(n);     printf("%d\n", result);     return 0; } 
Java
class GfG {        // Function to calculate the nth Fibonacci number using     // recursion     static int nthFibonacci(int n){         // Base case: if n is 0 or 1, return n         if (n <= 1) {             return n;         }         // Recursive case: sum of the two preceding         // Fibonacci numbers         return nthFibonacci(n - 1) + nthFibonacci(n - 2);     }      public static void main(String[] args){         int n = 5;         int result = nthFibonacci(n);         System.out.println(result);     } } 
Python
def nth_fibonacci(n):        # Base case: if n is 0 or 1, return n     if n <= 1:         return n            # Recursive case: sum of the two preceding Fibonacci numbers     return nth_fibonacci(n - 1) + nth_fibonacci(n - 2)  n = 5 result = nth_fibonacci(n) print(result) 
C#
using System;  class GfG {        // Function to calculate the nth Fibonacci number using     // recursion     static int nthFibonacci(int n){         // Base case: if n is 0 or 1, return n         if (n <= 1) {             return n;         }         // Recursive case: sum of the two preceding         // Fibonacci numbers         return nthFibonacci(n - 1) + nthFibonacci(n - 2);     }      static void Main(){         int n = 5;         int result = nthFibonacci(n);         Console.WriteLine(result);     } } 
JavaScript
function nthFibonacci(n){      // Base case: if n is 0 or 1, return n     if (n <= 1) {         return n;     }          // Recursive case: sum of the two preceding Fibonacci     // numbers     return nthFibonacci(n - 1) + nthFibonacci(n - 2); }  let n = 5; let result = nthFibonacci(n); console.log(result); 

Output
5 

Time Complexity: O(2n)
Auxiliary Space: O(n), due to recursion stack

[Expected Approach-1] Memoization Approach

In the previous approach there is a lot of redundant calculation that are calculating again and again, So we can store the results of previously computed Fibonacci numbers in a memo table to avoid redundant calculations. This will make sure that each Fibonacci number is only computed once, this will reduce the exponential time complexity of the naive approach O(2^n) into a more efficient O(n) time complexity.

C++
#include <bits/stdc++.h> using namespace std;  // Function to calculate the nth Fibonacci number using memoization int nthFibonacciUtil(int n, vector<int>& memo) {        // Base case: if n is 0 or 1, return n     if (n <= 1) {         return n;     }      // Check if the result is already in the memo table     if (memo[n] != -1) {         return memo[n];     }      // Recursive case: calculate Fibonacci number     // and store it in memo     memo[n] = nthFibonacciUtil(n - 1, memo)                         + nthFibonacciUtil(n - 2, memo);      return memo[n]; }  // Wrapper function that handles both initialization // and Fibonacci calculation int nthFibonacci(int n) {      // Create a memoization table and initialize with -1     vector<int> memo(n + 1, -1);          // Call the utility function     return nthFibonacciUtil(n, memo); }  int main() {     int n = 5;     int result = nthFibonacci(n);     cout << result << endl;      return 0; } 
C
#include <stdio.h>  // Function to calculate the nth Fibonacci number using memoization int nthFibonacciUtil(int n, int memo[]) {      // Base case: if n is 0 or 1, return n     if (n <= 1) {         return n;     }      // Check if the result is already in the memo table     if (memo[n] != -1) {         return memo[n];     }      // Recursive case: calculate Fibonacci number     // and store it in memo     memo[n] = nthFibonacciUtil(n - 1, memo)                     + nthFibonacciUtil(n - 2, memo);      return memo[n]; }  // Wrapper function that handles both initialization // and Fibonacci calculation int nthFibonacci(int n) {      // Create a memoization table and initialize with -1     int memo[n + 1];     for (int i = 0; i <= n; i++) {         memo[i] = -1;     }      // Call the utility function     return nthFibonacciUtil(n, memo); }  int main() {     int n = 5;     int result = nthFibonacci(n);     printf("%d\n", result);      return 0; } 
Java
import java.util.Arrays;  class GfG {      // Function to calculate the nth Fibonacci number using memoization     static int nthFibonacciUtil(int n, int[] memo) {                // Base case: if n is 0 or 1, return n         if (n <= 1) {             return n;         }          // Check if the result is already in the memo table         if (memo[n] != -1) {             return memo[n];         }          // Recursive case: calculate Fibonacci number         // and store it in memo         memo[n] = nthFibonacciUtil(n - 1, memo)                         + nthFibonacciUtil(n - 2, memo);          return memo[n];     }      // Wrapper function that handles both initialization     // and Fibonacci calculation     static int nthFibonacci(int n) {          // Create a memoization table and initialize with -1         int[] memo = new int[n + 1];         Arrays.fill(memo, -1);                  // Call the utility function         return nthFibonacciUtil(n, memo);     }      public static void main(String[] args) {         int n = 5;         int result = nthFibonacci(n);         System.out.println(result);     } } 
Python
# Function to calculate the nth Fibonacci number using memoization def nth_fibonacci_util(n, memo):      # Base case: if n is 0 or 1, return n     if n <= 1:         return n      # Check if the result is already in the memo table     if memo[n] != -1:         return memo[n]      # Recursive case: calculate Fibonacci number     # and store it in memo     memo[n] = nth_fibonacci_util(n - 1, memo) + nth_fibonacci_util(n - 2, memo)      return memo[n]   # Wrapper function that handles both initialization # and Fibonacci calculation def nth_fibonacci(n):      # Create a memoization table and initialize with -1     memo = [-1] * (n + 1)      # Call the utility function     return nth_fibonacci_util(n, memo)   if __name__ == "__main__":     n = 5     result = nth_fibonacci(n)     print(result) 
C#
using System;  class GfG {      // Function to calculate the nth Fibonacci number using memoization     static int nthFibonacciUtil(int n, int[] memo) {          // Base case: if n is 0 or 1, return n         if (n <= 1) {             return n;         }          // Check if the result is already in the memo table         if (memo[n] != -1) {             return memo[n];         }          // Recursive case: calculate Fibonacci number         // and store it in memo         memo[n] = nthFibonacciUtil(n - 1, memo)                          + nthFibonacciUtil(n - 2, memo);          return memo[n];     }      // Wrapper function that handles both initialization     // and Fibonacci calculation     static int nthFibonacci(int n) {          // Create a memoization table and initialize with -1         int[] memo = new int[n + 1];         Array.Fill(memo, -1);          // Call the utility function         return nthFibonacciUtil(n, memo);     }      public static void Main(string[] args) {         int n = 5;         int result = nthFibonacci(n);         Console.WriteLine(result);     } } 
JavaScript
// Function to calculate the nth Fibonacci number using memoization function nthFibonacciUtil(n, memo) {      // Base case: if n is 0 or 1, return n     if (n <= 1) {         return n;     }      // Check if the result is already in the memo table     if (memo[n] !== -1) {         return memo[n];     }      // Recursive case: calculate Fibonacci number     // and store it in memo     memo[n] = nthFibonacciUtil(n - 1, memo)                     + nthFibonacciUtil(n - 2, memo);      return memo[n]; }  // Wrapper function that handles both initialization // and Fibonacci calculation function nthFibonacci(n) {      // Create a memoization table and initialize with -1     let memo = new Array(n + 1).fill(-1);      // Call the utility function     return nthFibonacciUtil(n, memo); }  let n = 5; let result = nthFibonacci(n); console.log(result); 

Output
5 

Time Complexity: O(n), each fibonacci number is calculated only one times from 1 to n;
Auxiliary Space: O(n), due to memo table

[Expected Approach-2] Bottom-Up Approach

This approach uses dynamic programming to solve the Fibonacci problem by storing previously calculated Fibonacci numbers, avoiding the repeated calculations of the recursive approach. Instead of breaking down the problem recursively, it iteratively builds up the solution by calculating Fibonacci numbers from the bottom up.

C++
#include <bits/stdc++.h> using namespace std;  // Function to calculate the nth Fibonacci number using recursion int nthFibonacci(int n){     // Handle the edge cases     if (n <= 1)         return n;      // Create a vector to store Fibonacci numbers     vector<int> dp(n + 1);      // Initialize the first two Fibonacci numbers     dp[0] = 0;     dp[1] = 1;      // Fill the vector iteratively     for (int i = 2; i <= n; ++i){          // Calculate the next Fibonacci number         dp[i] = dp[i - 1] + dp[i - 2];     }      // Return the nth Fibonacci number     return dp[n]; }  int main(){     int n = 5;     int result = nthFibonacci(n);      cout << result << endl;      return 0; } 
C
#include <stdio.h>  // Function to calculate the nth Fibonacci number // using iteration int nthFibonacci(int n) {        // Handle the edge cases     if (n <= 1) return n;      // Create an array to store Fibonacci numbers     int dp[n + 1];      // Initialize the first two Fibonacci numbers     dp[0] = 0;     dp[1] = 1;      // Fill the array iteratively     for (int i = 2; i <= n; ++i) {         dp[i] = dp[i - 1] + dp[i - 2];     }      // Return the nth Fibonacci number     return dp[n]; }  int main() {     int n = 5;     int result = nthFibonacci(n);     printf("%d\n", result);     return 0; } 
Java
class GfG {        // Function to calculate the nth Fibonacci number using iteration     static int nthFibonacci(int n) {         // Handle the edge cases         if (n <= 1) return n;                // Create an array to store Fibonacci numbers         int[] dp = new int[n + 1];          // Initialize the first two Fibonacci numbers         dp[0] = 0;         dp[1] = 1;          // Fill the array iteratively         for (int i = 2; i <= n; ++i) {             dp[i] = dp[i - 1] + dp[i - 2];         }          // Return the nth Fibonacci number         return dp[n];     }      public static void main(String[] args) {         int n = 5;         int result = nthFibonacci(n);         System.out.println(result);     } } 
Python
def nth_fibonacci(n):        # Handle the edge cases     if n <= 1:         return n      # Create a list to store Fibonacci numbers     dp = [0] * (n + 1)      # Initialize the first two Fibonacci numbers     dp[0] = 0     dp[1] = 1      # Fill the list iteratively     for i in range(2, n + 1):         dp[i] = dp[i - 1] + dp[i - 2]      # Return the nth Fibonacci number     return dp[n]  n = 5 result = nth_fibonacci(n) print(result) 
C#
using System;  class GfG {        // Function to calculate the nth Fibonacci number using iteration     public static int nthFibonacci(int n) {                // Handle the edge cases         if (n <= 1) return n;          // Create an array to store Fibonacci numbers         int[] dp = new int[n + 1];          // Initialize the first two Fibonacci numbers         dp[0] = 0;         dp[1] = 1;          // Fill the array iteratively         for (int i = 2; i <= n; ++i) {             dp[i] = dp[i - 1] + dp[i - 2];         }          // Return the nth Fibonacci number         return dp[n];     }      static void Main() {         int n = 5;         int result = nthFibonacci(n);         Console.WriteLine(result);     } } 
JavaScript
function nthFibonacci(n) {      // Handle the edge cases     if (n <= 1) return n;      // Create an array to store Fibonacci numbers     let dp = new Array(n + 1);      // Initialize the first two Fibonacci numbers     dp[0] = 0;     dp[1] = 1;      // Fill the array iteratively     for (let i = 2; i <= n; i++) {         dp[i] = dp[i - 1] + dp[i - 2];     }      // Return the nth Fibonacci number     return dp[n]; }  let n = 5; let result = nthFibonacci(n); console.log(result); 

Output
5 

Time Complexity: O(n), the loop runs from 2 to n, performing a constant amount of work per iteration.
Auxiliary Space: O(n), due to the use of an extra array to store Fibonacci numbers up to n.

[Expected Approach-3] Space Optimized Approach

This approach is just an optimization of the above iterative approach, Instead of using the extra array for storing the Fibonacci numbers, we can store the values in the variables. We keep the previous two numbers only because that is all we need to get the next Fibonacci number in series.

C++
#include <bits/stdc++.h> using namespace std;  // Function to calculate the nth Fibonacci number // using space optimization int nthFibonacci(int n){      if (n <= 1) return n;      // To store the curr Fibonacci number     int curr = 0;      // To store the previous Fibonacci number     int prev1 = 1;     int prev2 = 0;      // Loop to calculate Fibonacci numbers from 2 to n     for (int i = 2; i <= n; i++){          // Calculate the curr Fibonacci number         curr = prev1 + prev2;          // Update prev2 to the last Fibonacci number         prev2 = prev1;          // Update prev1 to the curr Fibonacci number         prev1 = curr;     }      return curr; }   int main() {     int n = 5;     int result = nthFibonacci(n);     cout << result << endl;          return 0; } 
C
#include <stdio.h>  // Function to calculate the nth Fibonacci number // using space optimization int nthFibonacci(int n) {     if (n <= 1) return n;      // To store the curr Fibonacci number     int curr = 0;      // To store the previous Fibonacci numbers     int prev1 = 1;     int prev2 = 0;      // Loop to calculate Fibonacci numbers from 2 to n     for (int i = 2; i <= n; i++) {                // Calculate the curr Fibonacci number         curr = prev1 + prev2;          // Update prev2 to the last Fibonacci number         prev2 = prev1;          // Update prev1 to the curr Fibonacci number         prev1 = curr;     }      return curr; }  int main() {     int n = 5;     int result = nthFibonacci(n);     printf("%d\n", result);     return 0; } 
Java
class GfG {        // Function to calculate the nth Fibonacci number     // using space optimization     static int nthFibonacci(int n) {         if (n <= 1) return n;          // To store the curr Fibonacci number         int curr = 0;          // To store the previous Fibonacci numbers         int prev1 = 1;         int prev2 = 0;          // Loop to calculate Fibonacci numbers from 2 to n         for (int i = 2; i <= n; i++) {                        // Calculate the curr Fibonacci number             curr = prev1 + prev2;              // Update prev2 to the last Fibonacci number             prev2 = prev1;              // Update prev1 to the curr Fibonacci number             prev1 = curr;         }          return curr;     }      public static void main(String[] args) {         int n = 5;         int result = nthFibonacci(n);         System.out.println(result);     } } 
Python
def nth_fibonacci(n):     if n <= 1:         return n      # To store the curr Fibonacci number     curr = 0      # To store the previous Fibonacci numbers     prev1 = 1     prev2 = 0      # Loop to calculate Fibonacci numbers from 2 to n     for i in range(2, n + 1):                # Calculate the curr Fibonacci number         curr = prev1 + prev2          # Update prev2 to the last Fibonacci number         prev2 = prev1          # Update prev1 to the curr Fibonacci number         prev1 = curr      return curr  n = 5 result = nth_fibonacci(n) print(result) 
C#
using System;  class GfG {        // Function to calculate the nth Fibonacci number     // using space optimization     public static int nthFibonacci(int n) {         if (n <= 1) return n;          // To store the curr Fibonacci number         int curr = 0;          // To store the previous Fibonacci numbers         int prev1 = 1;         int prev2 = 0;          // Loop to calculate Fibonacci numbers from 2 to n         for (int i = 2; i <= n; i++) {                        // Calculate the curr Fibonacci number             curr = prev1 + prev2;              // Update prev2 to the last Fibonacci number             prev2 = prev1;              // Update prev1 to the curr Fibonacci number             prev1 = curr;         }          return curr;     }      static void Main() {         int n = 5;         int result = nthFibonacci(n);         Console.WriteLine(result);     } } 
JavaScript
function nthFibonacci(n) {     if (n <= 1) return n;      // To store the curr Fibonacci number     let curr = 0;      // To store the previous Fibonacci numbers     let prev1 = 1;     let prev2 = 0;      // Loop to calculate Fibonacci numbers from 2 to n     for (let i = 2; i <= n; i++) {              // Calculate the curr Fibonacci number         curr = prev1 + prev2;          // Update prev2 to the last Fibonacci number         prev2 = prev1;          // Update prev1 to the curr Fibonacci number         prev1 = curr;     }      return curr; }  let n = 5; let result = nthFibonacci(n); console.log(result); 

Output
5 

Time Complexity: O(n), The loop runs from 2 to n, performing constant time operations in each iteration.)
Auxiliary Space: O(1), Only a constant amount of extra space is used to store the current and two previous Fibonacci numbers.

Using Matrix Exponentiation – O(log(n)) time and O(log(n)) space

We know that each Fibonacci number is the sum of previous two Fibonacci numbers. we would either add numbers repeatedly or use loops or recursion, which takes time. But with matrix exponentiation, we can calculate Fibonacci numbers much faster by working with matrices. There’s a special matrix (transformation matrix) that represents how Fibonacci numbers work. It looks like this: [Tex]\begin{pmatrix}1 & 1 \\1 & 0 \end{pmatrix}[/Tex]This matrix captures the Fibonacci relationship. If we multiply this matrix by itself multiple times, it can give us Fibonacci numbers.

To find the Nth Fibonacci number we need to multiple transformation matrix (n-1) times, the matrix equation for the Fibonacci sequence looks like:
[Tex]\begin{pmatrix}1 & 1 \\1 & 0\end{pmatrix}^{n-1}=\begin{pmatrix}F(n) & F(n-1) \\F(n-1) & F(n-2)\end{pmatrix}[/Tex]

After raising the transformation matrix to the power n – 1, the top-left element F(n) will gives the nth Fibonacci number.

C++
#include <bits/stdc++.h> using namespace std;  // Function to multiply two 2x2 matrices void multiply(vector<vector<int>>& mat1,                                 vector<vector<int>>& mat2) {     // Perform matrix multiplication     int x = mat1[0][0] * mat2[0][0] + mat1[0][1] * mat2[1][0];     int y = mat1[0][0] * mat2[0][1] + mat1[0][1] * mat2[1][1];     int z = mat1[1][0] * mat2[0][0] + mat1[1][1] * mat2[1][0];     int w = mat1[1][0] * mat2[0][1] + mat1[1][1] * mat2[1][1];      // Update matrix mat1 with the result     mat1[0][0] = x;     mat1[0][1] = y;     mat1[1][0] = z;     mat1[1][1] = w; }  // Function to perform matrix exponentiation void matrixPower(vector<vector<int>>& mat1, int n) {     // Base case for recursion     if (n == 0 || n == 1) return;      // Initialize a helper matrix     vector<vector<int>> mat2 = {{1, 1}, {1, 0}};      // Recursively calculate mat1^(n/2)     matrixPower(mat1, n / 2);      // Square the matrix mat1     multiply(mat1, mat1);      // If n is odd, multiply by the helper matrix mat2     if (n % 2 != 0) {         multiply(mat1, mat2);     } }  // Function to calculate the nth Fibonacci number // using matrix exponentiation int nthFibonacci(int n) {     if (n <= 1) return n;      // Initialize the transformation matrix     vector<vector<int>> mat1 = {{1, 1}, {1, 0}};      // Raise the matrix mat1 to the power of (n - 1)     matrixPower(mat1, n - 1);      // The result is in the top-left cell of the matrix     return mat1[0][0]; }  int main() {     int n = 5;     int result = nthFibonacci(n);     cout << result << endl;      return 0; } 
C
#include <stdio.h>  // Function to multiply two 2x2 matrices void multiply(int mat1[2][2], int mat2[2][2]) {        // Perform matrix multiplication     int x = mat1[0][0] * mat2[0][0] + mat1[0][1] * mat2[1][0];     int y = mat1[0][0] * mat2[0][1] + mat1[0][1] * mat2[1][1];     int z = mat1[1][0] * mat2[0][0] + mat1[1][1] * mat2[1][0];     int w = mat1[1][0] * mat2[0][1] + mat1[1][1] * mat2[1][1];      // Update matrix mat1 with the result     mat1[0][0] = x;     mat1[0][1] = y;     mat1[1][0] = z;     mat1[1][1] = w; }  // Function to perform matrix exponentiation void matrixPower(int mat1[2][2], int n) {     // Base case for recursion     if (n == 0 || n == 1) return;      // Initialize a helper matrix     int mat2[2][2] = {{1, 1}, {1, 0}};      // Recursively calculate mat1^(n/2)     matrixPower(mat1, n / 2);      // Square the matrix mat1     multiply(mat1, mat1);      // If n is odd, multiply by the helper matrix mat2     if (n % 2 != 0) {         multiply(mat1, mat2);     } }  // Function to calculate the nth Fibonacci number int nthFibonacci(int n) {     if (n <= 1) return n;      // Initialize the transformation matrix     int mat1[2][2] = {{1, 1}, {1, 0}};      // Raise the matrix mat1 to the power of (n - 1)     matrixPower(mat1, n - 1);      // The result is in the top-left cell of the matrix     return mat1[0][0]; }  int main() {     int n = 5;     int result = nthFibonacci(n);     printf("%d\n", result);      return 0; } 
Java
import java.util.*;  // Function to multiply two 2x2 matrices class GfG {     static void multiply(int[][] mat1, int[][] mat2) {                // Perform matrix multiplication         int x = mat1[0][0] * mat2[0][0] + mat1[0][1] * mat2[1][0];         int y = mat1[0][0] * mat2[0][1] + mat1[0][1] * mat2[1][1];         int z = mat1[1][0] * mat2[0][0] + mat1[1][1] * mat2[1][0];         int w = mat1[1][0] * mat2[0][1] + mat1[1][1] * mat2[1][1];          // Update matrix mat1 with the result         mat1[0][0] = x;         mat1[0][1] = y;         mat1[1][0] = z;         mat1[1][1] = w;     }      // Function to perform matrix exponentiation     static void matrixPower(int[][] mat1, int n) {                // Base case for recursion         if (n == 0 || n == 1) return;          // Initialize a helper matrix         int[][] mat2 = {{1, 1}, {1, 0}};          // Recursively calculate mat1^(n/2)         matrixPower(mat1, n / 2);          // Square the matrix mat1         multiply(mat1, mat1);          // If n is odd, multiply by the helper matrix mat2         if (n % 2 != 0) {             multiply(mat1, mat2);         }     }      // Function to calculate the nth Fibonacci number     static int nthFibonacci(int n) {         if (n <= 1) return n;          // Initialize the transformation matrix         int[][] mat1 = {{1, 1}, {1, 0}};          // Raise the matrix mat1 to the power of (n - 1)         matrixPower(mat1, n - 1);          // The result is in the top-left cell of the matrix         return mat1[0][0];     }      public static void main(String[] args) {         int n = 5;         int result = nthFibonacci(n);         System.out.println(result);     } } 
Python
# Function to multiply two 2x2 matrices def multiply(mat1, mat2):        # Perform matrix multiplication     x = mat1[0][0] * mat2[0][0] + mat1[0][1] * mat2[1][0]     y = mat1[0][0] * mat2[0][1] + mat1[0][1] * mat2[1][1]     z = mat1[1][0] * mat2[0][0] + mat1[1][1] * mat2[1][0]     w = mat1[1][0] * mat2[0][1] + mat1[1][1] * mat2[1][1]      # Update matrix mat1 with the result     mat1[0][0], mat1[0][1] = x, y     mat1[1][0], mat1[1][1] = z, w  # Function to perform matrix exponentiation def matrix_power(mat1, n):        # Base case for recursion     if n == 0 or n == 1:         return      # Initialize a helper matrix     mat2 = [[1, 1], [1, 0]]      # Recursively calculate mat1^(n // 2)     matrix_power(mat1, n // 2)      # Square the matrix mat1     multiply(mat1, mat1)      # If n is odd, multiply by the helper matrix mat2     if n % 2 != 0:         multiply(mat1, mat2)  # Function to calculate the nth Fibonacci number def nth_fibonacci(n):     if n <= 1:         return n      # Initialize the transformation matrix     mat1 = [[1, 1], [1, 0]]      # Raise the matrix mat1 to the power of (n - 1)     matrix_power(mat1, n - 1)      # The result is in the top-left cell of the matrix     return mat1[0][0]  if __name__ == "__main__":     n = 5     result = nth_fibonacci(n)     print(result) 
C#
using System;  class GfG {      // Function to multiply two 2x2 matrices     static void Multiply(int[,] mat1, int[,] mat2) {                // Perform matrix multiplication         int x = mat1[0,0] * mat2[0,0] + mat1[0,1] * mat2[1,0];         int y = mat1[0,0] * mat2[0,1] + mat1[0,1] * mat2[1,1];         int z = mat1[1,0] * mat2[0,0] + mat1[1,1] * mat2[1,0];         int w = mat1[1,0] * mat2[0,1] + mat1[1,1] * mat2[1,1];          // Update matrix mat1 with the result         mat1[0,0] = x;         mat1[0,1] = y;         mat1[1,0] = z;         mat1[1,1] = w;     }      // Function to perform matrix exponentiation     static void MatrixPower(int[,] mat1, int n) {                // Base case for recursion         if (n == 0 || n == 1) return;          // Initialize a helper matrix         int[,] mat2 = { {1, 1}, {1, 0} };          // Recursively calculate mat1^(n / 2)         MatrixPower(mat1, n / 2);          // Square the matrix mat1         Multiply(mat1, mat1);          // If n is odd, multiply by the helper matrix mat2         if (n % 2 != 0) {             Multiply(mat1, mat2);         }     }      // Function to calculate the nth Fibonacci number     static int NthFibonacci(int n) {         if (n <= 1) return n;          // Initialize the transformation matrix         int[,] mat1 = { {1, 1}, {1, 0} };          // Raise the matrix mat1 to the power of (n - 1)         MatrixPower(mat1, n - 1);          // The result is in the top-left cell of the matrix         return mat1[0,0];     }      public static void Main(string[] args) {         int n = 5;         int result = NthFibonacci(n);         Console.WriteLine(result);     } } 
JavaScript
// Function to multiply two 2x2 matrices function multiply(mat1, mat2) {     // Perform matrix multiplication     const x = mat1[0][0] * mat2[0][0] + mat1[0][1] * mat2[1][0];     const y = mat1[0][0] * mat2[0][1] + mat1[0][1] * mat2[1][1];     const z = mat1[1][0] * mat2[0][0] + mat1[1][1] * mat2[1][0];     const w = mat1[1][0] * mat2[0][1] + mat1[1][1] * mat2[1][1];      // Update matrix mat1 with the result     mat1[0][0] = x;     mat1[0][1] = y;     mat1[1][0] = z;     mat1[1][1] = w; }  // Function to perform matrix exponentiation function matrixPower(mat1, n) {     // Base case for recursion     if (n === 0 || n === 1) return;      // Initialize a helper matrix     const mat2 = [[1, 1], [1, 0]];      // Recursively calculate mat1^(n // 2)     matrixPower(mat1, Math.floor(n / 2));      // Square the matrix mat1     multiply(mat1, mat1);      // If n is odd, multiply by the helper matrix mat2     if (n % 2 !== 0) {         multiply(mat1, mat2);     } }  // Function to calculate the nth Fibonacci number function nthFibonacci(n) {     if (n <= 1) return n;      // Initialize the transformation matrix     const mat1 = [[1, 1], [1, 0]];      // Raise the matrix mat1 to the power of (n - 1)     matrixPower(mat1, n - 1);      // The result is in the top-left cell of the matrix     return mat1[0][0]; }  const n = 5; const result = nthFibonacci(n); console.log(result); 

Output
5 

Time Complexity: O(log(n), We have used exponentiation by squaring, which reduces the number of matrix multiplications to O(log n), because with each recursive call, the power is halved.
Auxiliary Space: O(log n), due to the recursion stack.

[Other Approach] Using Golden ratio

The nth Fibonacci number can be found using the Golden Ratio, which is approximately = [Tex]\phi = \frac{1 + \sqrt{5}}{2}[/Tex]. The intuition behind this method is based on Binet’s formula, which expresses the nth Fibonacci number directly in terms of the Golden Ratio.

Binet’s Formula: The nth Fibonacci number F(n) can be calculated using the formula: [Tex]F(n) = \frac{\phi^n – (1 – \phi)^n}{\sqrt{5}}[/Tex]
For more detail for this approach, please refer to our article “Find nth Fibonacci number using Golden ratio“


Related Articles: 

  • Program to print first n Fibonacci Numbers
  • Large Fibonacci Numbers in Java
  • Program to find last two digits of Nth Fibonacci number


Next Article
C++ Program For Fibonacci Numbers
author
kartik
Improve
Article Tags :
  • DSA
  • Dynamic Programming
  • Mathematical
  • Amazon
  • Bloomberg
  • Fibonacci
  • MakeMyTrip
  • MAQ Software
  • matrix-exponentiation
  • Modular Arithmetic
  • series
  • Snapdeal
Practice Tags :
  • Amazon
  • Bloomberg
  • MakeMyTrip
  • MAQ Software
  • Snapdeal
  • Dynamic Programming
  • Fibonacci
  • Mathematical
  • Modular Arithmetic
  • series

Similar Reads

  • How to check if a given number is Fibonacci number?
    Given a number ‘n’, how to check if n is a Fibonacci number. First few Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, .. Examples :Input : 8Output : YesInput : 34Output : YesInput : 41Output : NoApproach 1:A simple way is to generate Fibonacci numbers until the generated number
    15+ min read
  • Nth Fibonacci Number
    Given a positive integer n, the task is to find the nth Fibonacci number. The Fibonacci sequence is a sequence where the next term is the sum of the previous two terms. The first two terms of the Fibonacci sequence are 0 followed by 1. The Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21 Example: Inp
    15+ min read
  • C++ Program For Fibonacci Numbers
    The Fibonacci series is the sequence where each number is the sum of the previous two numbers. The first two numbers of the Fibonacci series are 0 and 1 and are used to generate the whole series. In this article, we will learn how to find the nth Fibonacci number in C++. Examples Input: 5Output: 5Ex
    5 min read
  • Python Program for n-th Fibonacci number
    In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence relation Fn = Fn-1 + Fn-2With seed values F0 = 0 and F1 = 1.Table of Content Python Program for n-th Fibonacci number Using Formula Python Program for n-th Fibonacci number Using RecursionPython Program for n-th
    6 min read
  • Interesting Programming facts about Fibonacci numbers
    We know Fibonacci number, Fn = Fn-1 + Fn-2. First few Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, .... . Here are some interesting facts about Fibonacci number : 1. Pattern in Last digits of Fibonacci numbers : Last digits of first few Fibonacci Numbers ar
    15+ min read
  • Find nth Fibonacci number using Golden ratio
    Fibonacci series = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ........Different methods to find nth Fibonacci number are already discussed. Another simple way of finding nth Fibonacci number is using golden ratio as Fibonacci numbers maintain approximate golden ratio till infinite. Golden ratio: [Tex]\varphi
    6 min read
  • Fast Doubling method to find the Nth Fibonacci number
    Given an integer N, the task is to find the N-th Fibonacci numbers.Examples: Input: N = 3 Output: 2 Explanation: F(1) = 1, F(2) = 1 F(3) = F(1) + F(2) = 2 Input: N = 6 Output: 8 Approach: The Matrix Exponentiation Method is already discussed before. The Doubling Method can be seen as an improvement
    14 min read
  • Tail Recursion for Fibonacci
    Write a tail recursive function for calculating the n-th Fibonacci number. Examples : Input : n = 4 Output : fib(4) = 3 Input : n = 9 Output : fib(9) = 34 Prerequisites : Tail Recursion, Fibonacci numbersA recursive function is tail recursive when the recursive call is the last thing executed by the
    4 min read
  • Sum of Fibonacci Numbers
    Given a number positive number n, find value of f0 + f1 + f2 + .... + fn where fi indicates i'th Fibonacci number. Remember that f0 = 0, f1 = 1, f2 = 1, f3 = 2, f4 = 3, f5 = 5, ... Examples : Input : n = 3Output : 4Explanation : 0 + 1 + 1 + 2 = 4 Input : n = 4Output : 7Explanation : 0 + 1 + 1 + 2 +
    9 min read
  • Fibonacci Series

    • Program to Print Fibonacci Series
      Ever wondered about the cool math behind the Fibonacci series? This simple pattern has a remarkable presence in nature, from the arrangement of leaves on plants to the spirals of seashells. We're diving into this Fibonacci Series sequence. It's not just math, it's in art, nature, and more! Let's dis
      9 min read

    • Program to Print Fibonacci Series in Java
      The Fibonacci series is a series of elements where the previous two elements are added to generate the next term. It starts with 0 and 1, for example, 0, 1, 1, 2, 3, and so on. We can mathematically represent it in the form of a function to generate the n'th Fibonacci number because it follows a con
      6 min read

    • Print the Fibonacci sequence - Python
      To print the Fibonacci sequence in Python, we need to generate a series of numbers where each number is the sum of the two preceding ones, starting from 0 and 1. The Fibonacci sequence follows a specific pattern that begins with 0 and 1, and every subsequent number is the sum of the two previous num
      5 min read

    • C Program to Print Fibonacci Series
      The Fibonacci series is the sequence where each number is the sum of the previous two numbers of the sequence. The first two numbers are 0 and 1 which are used to generate the whole series. Example Input: n = 5Output: 0 1 1 2 3Explanation: The first 5 terms of the Fibonacci series are 0, 1, 1, 2, 3.
      4 min read

    • JavaScript Program to print Fibonacci Series
      The Fibonacci sequence is the integer sequence where the first two terms are 0 and 1. After that, the next term is defined as the sum of the previous two terms. The recurrence relation defines the sequence Fn of Fibonacci numbers: Fn = Fn-1 + Fn-2 with seed values F0 = 0 and F1 = 1 Examples: Input :
      4 min read

    • Length of longest subsequence of Fibonacci Numbers in an Array
      Given an array arr containing non-negative integers, the task is to print the length of the longest subsequence of Fibonacci numbers in this array.Examples: Input: arr[] = { 3, 4, 11, 2, 9, 21 } Output: 3 Here, the subsequence is {3, 2, 21} and hence the answer is 3.Input: arr[] = { 6, 4, 10, 13, 9,
      5 min read

    • Last digit of sum of numbers in the given range in the Fibonacci series
      Given two non-negative integers M, N which signifies the range [M, N] where M ? N, the task is to find the last digit of the sum of FM + FM+1... + FN where FK is the Kth Fibonacci number in the Fibonacci series. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... Examples: Input: M = 3, N = 9 Output:
      5 min read

    • K- Fibonacci series
      Given integers 'K' and 'N', the task is to find the Nth term of the K-Fibonacci series. In K - Fibonacci series, the first 'K' terms will be '1' and after that every ith term of the series will be the sum of previous 'K' elements in the same series. Examples: Input: N = 4, K = 2 Output: 3 The K-Fibo
      7 min read

    • Fibonacci Series in Bash
      Prerequisite: Fibonacci Series Write a program to print the Fibonacci sequence up to nth digit using Bash. Examples: Input : 5 Output : Fibonacci Series is : 0 1 1 2 3 Input :4 Output : Fibonacci Series is : 0 1 1 2 The Fibonacci numbers are the numbers in the following integer sequence . 0, 1, 1, 2
      1 min read

    • R Program to Print the Fibonacci Sequence
      The Fibonacci sequence is a series of numbers in which each number (known as a Fibonacci number) is the sum of the two preceding ones. The sequence starts with 0 and 1, and then each subsequent number is the sum of the two previous numbers. The Fibonacci sequence has many applications in various fie
      3 min read

geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences