Product of all Subarrays of an Array | Set 2
Last Updated : 05 May, 2021
Given an array arr[] of integers of size N, the task is to find the products of all subarrays of the array.
Examples:
Input: arr[] = {2, 4}
Output: 64
Explanation:
Here, subarrays are {2}, {2, 4}, and {4}.
Products of each subarray are 2, 8, 4.
Product of all Subarrays = 64
Input: arr[] = {1, 2, 3}
Output: 432
Explanation:
Here, subarrays are {1}, {1, 2}, {1, 2, 3}, {2}, {2, 3}, {3}.
Products of each subarray are 1, 2, 6, 2, 6, 3.
Product of all Subarrays = 432
Naive and Iterative approach: Please refer this post for these approaches.
Approach: The idea is to count the number of each element occurs in all the subarrays. To count we have below observations:
- In every subarray beginning with arr[i], there are (N - i) such subsets starting with the element arr[i].
For Example:
For array arr[] = {1, 2, 3}
N = 3 and for element 2 i.e., index = 1
There are (N - index) = 3 - 1 = 2 subsets
{2} and {2, 3}
- For any element arr[i], there are (N - i)*i subarrays where arr[i] is not the first element.
For array arr[] = {1, 2, 3}
N = 3 and for element 2 i.e., index = 1
There are (N - index)*index = (3 - 1)*1 = 2 subsets where 2 is not the first element.
{1, 2} and {1, 2, 3}
Therefore, from the above observations, the total number of each element arr[i] occurs in all the subarrays at every index i is given by:
total_elements = (N - i) + (N - i)*i total_elements = (N - i)*(i + 1)
The idea is to multiply each element (N - i)*(i + 1) number of times to get the product of elements in all subarrays.
Below is the implementation of the above approach:
C++ // C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the product of // elements of all subarray long int SubArrayProdct(int arr[], int n) { // Initialize the result long int result = 1; // Computing the product of // subarray using formula for (int i = 0; i < n; i++) result *= pow(arr[i], (i + 1) * (n - i)); // Return the product of all // elements of each subarray return result; } // Driver Code int main() { // Given array arr[] int arr[] = { 2, 4 }; int N = sizeof(arr) / sizeof(arr[0]); // Function Call cout << SubArrayProdct(arr, N) << endl; return 0; }
Java // Java program for the above approach import java.util.*; class GFG{ // Function to find the product of // elements of all subarray static int SubArrayProdct(int arr[], int n) { // Initialize the result int result = 1; // Computing the product of // subarray using formula for(int i = 0; i < n; i++) result *= Math.pow(arr[i], (i + 1) * (n - i)); // Return the product of all // elements of each subarray return result; } // Driver code public static void main(String[] args) { // Given array arr[] int arr[] = new int[]{2, 4}; int N = arr.length; // Function Call System.out.println(SubArrayProdct(arr, N)); } } // This code is contributed by Pratima Pandey
Python3 # Python3 program for the above approach # Function to find the product of # elements of all subarray def SubArrayProdct(arr, n): # Initialize the result result = 1; # Computing the product of # subarray using formula for i in range(0, n): result *= pow(arr[i], (i + 1) * (n - i)); # Return the product of all # elements of each subarray return result; # Driver Code # Given array arr[] arr = [ 2, 4 ]; N = len(arr); # Function Call print(SubArrayProdct(arr, N)) # This code is contributed by Code_Mech
C# // C# program for the above approach using System; class GFG{ // Function to find the product of // elements of all subarray static int SubArrayProdct(int []arr, int n) { // Initialize the result int result = 1; // Computing the product of // subarray using formula for(int i = 0; i < n; i++) result *= (int)(Math.Pow(arr[i], (i + 1) * (n - i))); // Return the product of all // elements of each subarray return result; } // Driver code public static void Main() { // Given array arr[] int []arr = new int[]{2, 4}; int N = arr.Length; // Function Call Console.Write(SubArrayProdct(arr, N)); } } // This code is contributed by Code_Mech
JavaScript <script> // JavaScript program to implement // the above approach // Function to find the product of // elements of all subarray function SubArrayProdct(arr, n) { // Initialize the result let result = 1; // Computing the product of // subarray using formula for(let i = 0; i < n; i++) result *= Math.pow(arr[i], (i + 1) * (n - i)); // Return the product of all // elements of each subarray return result; } // Driver code // Given array arr[] let arr = [2, 4]; let N = arr.length; // Function Call document.write(SubArrayProdct(arr, N)); // This code is contributed by sanjoy_62. </script>
Time Complexity: O(N), where N is the number of elements.
Auxiliary Space: O(1)
Similar Reads
Product of all Subarrays of an Array Given an array of integers arr of size N, the task is to print products of all subarrays of the array. Examples: Input: arr[] = {2, 4} Output: 64 Here, subarrays are [2], [2, 4], [4] Products are 2, 8, 4 Product of all Subarrays = 64 Input : arr[] = {10, 3, 7} Output : 27783000 Here, subarrays are [
7 min read
Product of all non repeating Subarrays of an Array Given an array containing distinct integers arr[] of size N, the task is to print the product of all non-repeating subarrays of the array. Examples: Input: arr[] = {2, 4} Output: 64 Explanation: The possible subarrays for the given array are {2}, {2, 4}, {4} The products are 2, 8, 4 respectively. Th
5 min read
Sum of products of all possible Subarrays Given an array arr[] of N positive integers, the task is to find the sum of the product of elements of all the possible subarrays. Examples: Input: arr[] = {1, 2, 3}Output: 20Explanation: Possible Subarrays are: {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}.Products of all the above subarrays are 1, 2, 3
6 min read
Print all subsets of a given Set or Array Given an array arr of size n, your task is to print all the subsets of the array in lexicographical order.A subset is any selection of elements from an array, where the order does not matter, and no element appears more than once. It can include any number of elements, from none (the empty subset) t
12 min read
A product array puzzle | Set 2 (O(1) Space) Given an array arr[] of size n, construct a product array res[] (of the same size) such that res[i] is equal to the product of all the elements of arr[] except arr[i]. Note: Solve it without division operator and in O(n).Examples: Input: arr[] = [10, 3, 5, 6, 2]Output: [180, 600, 360, 300, 900]Expla
13 min read