Probability of reaching a point with 2 or 3 steps at a time
Last Updated : 09 Nov, 2023
A person starts walking from position X = 0, find the probability to reach exactly on X = N if she can only take either 2 steps or 3 steps. Probability for step length 2 is given i.e. P, probability for step length 3 is 1 - P.
Examples :
Input : N = 5, P = 0.20
Output : 0.32
Explanation :-
There are two ways to reach 5.
2+3 with probability = 0.2 * 0.8 = 0.16
3+2 with probability = 0.8 * 0.2 = 0.16
So, total probability = 0.32.
It is a simple dynamic programming problem. It is simple extension of this problem :- count-ofdifferent-ways-express-n-sum-1-3-4
Below is the implementation of the above approach.
C++ // CPP Program to find probability to // reach N with P probability to take // 2 steps (1-P) to take 3 steps #include <bits/stdc++.h> using namespace std; // Returns probability to reach N float find_prob(int N, float P) { double dp[N + 1]; dp[0] = 1; dp[1] = 0; dp[2] = P; dp[3] = 1 - P; for (int i = 4; i <= N; ++i) dp[i] = (P)*dp[i - 2] + (1 - P) * dp[i - 3]; return dp[N]; } // Driver code int main() { int n = 5; float p = 0.2; cout << find_prob(n, p); return 0; }
Java // Java Program to find probability to // reach N with P probability to take // 2 steps (1-P) to take 3 steps import java.io.*; class GFG { // Returns probability to reach N static float find_prob(int N, float P) { double dp[] = new double[N + 1]; dp[0] = 1; dp[1] = 0; dp[2] = P; dp[3] = 1 - P; for (int i = 4; i <= N; ++i) dp[i] = (P) * dp[i - 2] + (1 - P) * dp[i - 3]; return ((float)(dp[N])); } // Driver code public static void main(String args[]) { int n = 5; float p = 0.2f; System.out.printf("%.2f",find_prob(n, p)); } } /* This code is contributed by Nikita Tiwari.*/
Python3 # Python 3 Program to find # probability to reach N with # P probability to take 2 # steps (1-P) to take 3 steps # Returns probability to reach N def find_prob(N, P) : dp =[0] * (n + 1) dp[0] = 1 dp[1] = 0 dp[2] = P dp[3] = 1 - P for i in range(4, N + 1) : dp[i] = (P) * dp[i - 2] + (1 - P) * dp[i - 3] return dp[N] # Driver code n = 5 p = 0.2 print(round(find_prob(n, p), 2)) # This code is contributed by Nikita Tiwari.
C# // C# Program to find probability to // reach N with P probability to take // 2 steps (1-P) to take 3 steps using System; class GFG { // Returns probability to reach N static float find_prob(int N, float P) { double []dp = new double[N + 1]; dp[0] = 1; dp[1] = 0; dp[2] = P; dp[3] = 1 - P; for (int i = 4; i <= N; ++i) dp[i] = (P) * dp[i - 2] + (1 - P) * dp[i - 3]; return ((float)(dp[N])); } // Driver code public static void Main() { int n = 5; float p = 0.2f; Console.WriteLine(find_prob(n, p)); } } /* This code is contributed by vt_m.*/
JavaScript <script> // JavaScript Program to find probability to // reach N with P probability to take // 2 steps (1-P) to take 3 steps // Returns probability to reach N function find_prob(N, P) { let dp = []; dp[0] = 1; dp[1] = 0; dp[2] = P; dp[3] = 1 - P; for (let i = 4; i <= N; ++i) dp[i] = (P) * dp[i - 2] + (1 - P) * dp[i - 3]; return (dp[N]); } // Driver Code let n = 5; let p = 0.2; document.write(find_prob(n, p)); // This code is contributed by chinmoy1997pal. </script>
PHP <?php // PHP Program to find probability to // reach N with P probability to take // 2 steps (1-P) to take 3 steps // Returns probability to reach N function find_prob($N, $P) { $dp; $dp[0] = 1; $dp[1] = 0; $dp[2] = $P; $dp[3] = 1 - $P; for ($i = 4; $i <= $N; ++$i) $dp[$i] = ($P) * $dp[$i - 2] + (1 - $P) * $dp[$i - 3]; return $dp[$N]; } // Driver code $n = 5; $p = 0.2; echo find_prob($n, $p); // This code is contributed by mits. ?>
Time Complexity: O(n)
Auxiliary Space: O(n)
Efficient approach: Space optimization O(1)
In the previous approach, the current value dp[i] only depends on the previous 2 values of dp i.e. dp[i-2] and dp[i-3]. So to optimize the space complexity we can store the previous 4 values of Dp in 4 variables his way, the space complexity will be reduced from O(N) to O(1)
Implementation Steps:
- Initialize variables for dp[0], dp[1], dp[2], and dp[3] as 1, 0, P, and 1-P respectively.
- Iterate from i = 4 to N and use the formula dp[i] = (P)*dp[i - 2] + (1 - P) * dp[i - 3] to compute the current value of dp.
- After each iteration, update the values of dp0, dp1, dp2, and dp3 to dp1, dp2, dp3, and curr respectively.
- Return the final value of curr.
Implementation:
C++ // CPP Program to find probability to // reach N with P probability to take // 2 steps (1-P) to take 3 steps #include <bits/stdc++.h> using namespace std; // Returns probability to reach N float find_prob(int N, float P) { // to store current value double curr; // store previous 4 values of DP double dp0 = 1, dp1=0, dp2=P, dp3= 1-P; // iterate over subproblems to get // current solution from previous computations for (int i = 4; i <= N; ++i){ curr = (P)*dp2 + (1 - P) * dp1; // assigning values to iterate further dp0=dp1; dp1=dp2; dp2=dp3; dp3=curr; } // return final answer return curr; } // Driver code int main() { int n = 5; float p = 0.2; cout << find_prob(n, p); return 0; }
Java import java.util.*; public class Main { // Returns probability to reach N static float find_prob(int N, float P) { // to store current value double curr; // store previous 4 values of DP double dp0 = 1, dp1 = 0, dp2 = P, dp3 = 1 - P; // iterate over subproblems to get // current solution from previous computations for (int i = 4; i <= N; ++i) { curr = (P) * dp2 + (1 - P) * dp1; // assigning values to iterate further dp0 = dp1; dp1 = dp2; dp2 = dp3; dp3 = curr; } // return final answer return (float) curr; } // Driver code public static void main(String[] args) { int n = 5; float p = 0.2f; System.out.println(find_prob(n, p)); } }
Python3 # Function to find the probability to reach N with P probability to # take 2 steps and (1-P) to take 3 steps def find_prob(N, P): # Initialize variables to store current and previous values curr = 0.0 # Initialize previous 4 values of DP dp0, dp1, dp2, dp3 = 1.0, 0.0, P, 1 - P # Iterate over subproblems to calculate the # current solution from previous computations for i in range(4, N + 1): curr = P * dp2 + (1 - P) * dp1 # Update values for the next iteration dp0, dp1, dp2, dp3 = dp1, dp2, dp3, curr # Round the final answer to 2 decimal places return round(curr, 2) # Driver code if __name__ == "__main__": n = 5 p = 0.2 print(find_prob(n, p))
C# using System; class Program { // Function to find the probability to reach N with P probability to take 2 steps and (1-P) to take 3 steps static double FindProbability(int N, double P) { double curr = 0.0; double dp1 = 0.0, dp2 = P, dp3 = 1 - P; // Iterate over subproblems to calculate the current solution from previous computations for (int i = 4; i <= N; i++) { curr = P * dp2 + (1 - P) * dp1; // Update values for the next iteration dp1 = dp2; dp2 = dp3; dp3 = curr; } // Return the final answer return curr; } static void Main() { int n = 5; double p = 0.2; Console.WriteLine(FindProbability(n, p)); } }
JavaScript // Returns probability to reach N function find_prob(N, P) { // to store current value let curr; // store previous 4 values of DP let dp0 = 1, dp1 = 0, dp2 = P, dp3 = 1 - P; // iterate over subproblems to get // current solution from previous computations for (let i = 4; i <= N; ++i) { curr = (P * dp2) + ((1 - P) * dp1); // assigning values to iterate further dp0 = dp1; dp1 = dp2; dp2 = dp3; dp3 = curr; } // return final answer return curr; } // Driver code let n = 5; let p = 0.2; console.log(find_prob(n, p).toFixed(2));
Time complexity: O(N)
Auxiliary Space: O(1)