Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • DSA
  • Interview Problems on DP
  • Practice DP
  • MCQs on DP
  • Tutorial on Dynamic Programming
  • Optimal Substructure
  • Overlapping Subproblem
  • Memoization
  • Tabulation
  • Tabulation vs Memoization
  • 0/1 Knapsack
  • Unbounded Knapsack
  • Subset Sum
  • LCS
  • LIS
  • Coin Change
  • Word Break
  • Egg Dropping Puzzle
  • Matrix Chain Multiplication
  • Palindrome Partitioning
  • DP on Arrays
  • DP with Bitmasking
  • Digit DP
  • DP on Trees
  • DP on Graph
Open In App
Next Article:
Printing Longest Increasing Subsequence (LIS)
Next article icon

Printing Maximum Sum Increasing Subsequence

Last Updated : 23 Apr, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report
Try it on GfG Practice
redirect icon

The Maximum Sum Increasing Subsequence problem is to find the maximum sum subsequence of a given sequence such that all elements of the subsequence are sorted in increasing order.

Examples: 

Input:  [1, 101, 2, 3, 100, 4, 5]
Output: [1, 2, 3, 100]

Input: [3, 4, 5, 10]
Output: [3, 4, 5, 10]

Input: [10, 5, 4, 3]
Output: [10]

Input: [3, 2, 6, 4, 5, 1]
Output: [3, 4, 5]

In previous post, we have discussed the Maximum Sum Increasing Subsequence problem. However, the post only covered code related to finding maximum sum of increasing subsequence, but not to the construction of subsequence. In this post, we will discuss how to construct Maximum Sum Increasing Subsequence itself.

Let arr[0..n-1] be the input array. We define vector L such that L[i] is itself is a vector that stores Maximum Sum Increasing Subsequence of arr[0..i] that ends with arr[i]. Therefore for index i, L[i] can be recursively written as 

L[0] = {arr[0]}
L[i] = {MaxSum(L[j])} + arr[i] where j < i and arr[j] < arr[i]
= arr[i], if there is no j such that arr[j] < arr[i]


For example, for array [3, 2, 6, 4, 5, 1], 

L[0]: 3
L[1]: 2
L[2]: 3 6
L[3]: 3 4
L[4]: 3 4 5
L[5]: 1


Below is the implementation of the above idea – 

C++
/* Dynamic Programming solution to construct    Maximum Sum Increasing Subsequence */ #include <iostream> #include <vector> using namespace std;  // Utility function to calculate sum of all // vector elements int findSum(vector<int> arr) {     int sum = 0;     for (int i : arr)         sum += i;     return sum; }  // Function to construct Maximum Sum Increasing // Subsequence void printMaxSumIS(int arr[], int n) {     // L[i] - The Maximum Sum Increasing     // Subsequence that ends with arr[i]     vector<vector<int> > L(n);      // L[0] is equal to arr[0]     L[0].push_back(arr[0]);      // start from index 1     for (int i = 1; i < n; i++) {         // for every j less than i         for (int j = 0; j < i; j++) {             /* L[i] = {MaxSum(L[j])} + arr[i]             where j < i and arr[j] < arr[i] */             if ((arr[i] > arr[j])                 && (findSum(L[i]) < findSum(L[j])))                 L[i] = L[j];         }          // L[i] ends with arr[i]         L[i].push_back(arr[i]);          // L[i] now stores Maximum Sum Increasing         // Subsequence of arr[0..i] that ends with         // arr[i]     }      vector<int> res = L[0];      // find max     for (vector<int> x : L)         if (findSum(x) > findSum(res))             res = x;      // max will contain result     for (int i : res)         cout << i << " ";     cout << endl; }  // Driver Code int main() {     int arr[] = { 3, 2, 6, 4, 5, 1 };     int n = sizeof(arr) / sizeof(arr[0]);      // construct and print Max Sum IS of arr     printMaxSumIS(arr, n);      return 0; } 
Java
/* Dynamic Programming solution to construct Maximum Sum Increasing Subsequence */ import java.util.*;  class GFG {      // Utility function to calculate sum of all     // vector elements     static int findSum(Vector<Integer> arr)     {         int sum = 0;         for (int i : arr)             sum += i;         return sum;     }      // Function to construct Maximum Sum Increasing     // Subsequence     static void printMaxSumIs(int[] arr, int n)     {          // L[i] - The Maximum Sum Increasing         // Subsequence that ends with arr[i]         @SuppressWarnings("unchecked")         Vector<Integer>[] L = new Vector[n];          for (int i = 0; i < n; i++)             L[i] = new Vector<>();          // L[0] is equal to arr[0]         L[0].add(arr[0]);          // start from index 1         for (int i = 1; i < n; i++) {              // for every j less than i             for (int j = 0; j < i; j++) {                  /*                 * L[i] = {MaxSum(L[j])} + arr[i]                   where j < i and arr[j] < arr[i]                 */                 if ((arr[i] > arr[j])                     && (findSum(L[i]) < findSum(L[j]))) {                     for (int k : L[j])                         if (!L[i].contains(k))                             L[i].add(k);                 }             }              // L[i] ends with arr[i]             L[i].add(arr[i]);              // L[i] now stores Maximum Sum Increasing             // Subsequence of arr[0..i] that ends with             // arr[i]         }          Vector<Integer> res = new Vector<>(L[0]);         // res = L[0];          // find max         for (Vector<Integer> x : L)             if (findSum(x) > findSum(res))                 res = x;          // max will contain result         for (int i : res)             System.out.print(i + " ");         System.out.println();     }      // Driver Code     public static void main(String[] args)     {         int[] arr = { 3, 2, 6, 4, 5, 1 };         int n = arr.length;          // construct and print Max Sum IS of arr         printMaxSumIs(arr, n);     } }  // This code is contributed by // sanjeev2552 
Python
# Dynamic Programming solution to construct # Maximum Sum Increasing Subsequence */  # Utility function to calculate sum of all # vector elements   def findSum(arr):      summ = 0     for i in arr:         summ += i     return summ  # Function to construct Maximum Sum Increasing # Subsequence   def printMaxSumIS(arr, n):      # L[i] - The Maximum Sum Increasing     # Subsequence that ends with arr[i]     L = [[] for i in range(n)]      # L[0] is equal to arr[0]     L[0].append(arr[0])      # start from index 1     for i in range(1, n):          # for every j less than i         for j in range(i):              # L[i] = {MaxSum(L[j])} + arr[i]             # where j < i and arr[j] < arr[i]             if ((arr[i] > arr[j]) and                     (findSum(L[i]) < findSum(L[j]))):                 for e in L[j]:                     if e not in L[i]:                         L[i].append(e)          # L[i] ends with arr[i]         L[i].append(arr[i])          # L[i] now stores Maximum Sum Increasing         # Subsequence of arr[0..i] that ends with         # arr[i]      res = L[0]      # find max     for x in L:         if (findSum(x) > findSum(res)):             res = x      # max will contain result     for i in res:         print(i, end=" ")   # Driver Code arr = [3, 2, 6, 4, 5, 1] n = len(arr)  # construct and prMax Sum IS of arr printMaxSumIS(arr, n)  # This code is contributed by Mohit Kumar 
C#
/* Dynamic Programming solution to construct Maximum Sum Increasing Subsequence */ using System; using System.Collections.Generic;  class GFG {      // Utility function to calculate sum of all     // vector elements     static int findSum(List<int> arr)     {         int sum = 0;         foreach(int i in arr) sum += i;         return sum;     }      // Function to construct Maximum Sum Increasing     // Subsequence     static void printMaxSumIs(int[] arr, int n)     {          // L[i] - The Maximum Sum Increasing         // Subsequence that ends with arr[i]         List<int>[] L = new List<int>[ n ];          for (int i = 0; i < n; i++)             L[i] = new List<int>();          // L[0] is equal to arr[0]         L[0].Add(arr[0]);          // start from index 1         for (int i = 1; i < n; i++) {              // for every j less than i             for (int j = 0; j < i; j++) {                  /*                 * L[i] = {MaxSum(L[j])} + arr[i]                 where j < i and arr[j] < arr[i]                 */                 if ((arr[i] > arr[j])                     && (findSum(L[i]) < findSum(L[j]))) {                     foreach(int k in                                 L[j]) if (!L[i].Contains(k))                         L[i]                             .Add(k);                 }             }              // L[i] ends with arr[i]             L[i].Add(arr[i]);              // L[i] now stores Maximum Sum Increasing             // Subsequence of arr[0..i] that ends with             // arr[i]         }          List<int> res = new List<int>(L[0]);         // res = L[0];          // find max         foreach(List<int> x in L) if (findSum(x)                                       > findSum(res)) res             = x;          // max will contain result         foreach(int i in res) Console.Write(i + " ");         Console.WriteLine();     }      // Driver Code     public static void Main(String[] args)     {         int[] arr = { 3, 2, 6, 4, 5, 1 };         int n = arr.Length;          // construct and print Max Sum IS of arr         printMaxSumIs(arr, n);     } }  // This code is contributed by PrinciRaj1992 
JavaScript
<script>  /* Dynamic Programming solution to construct Maximum Sum Increasing Subsequence */          // Utility function to calculate sum of all     // vector elements     function findSum(arr)     {         let sum = 0;         for (let i=0;i<arr.length;i++)             sum += arr[i];         return sum;     }          // Function to construct Maximum Sum Increasing     // Subsequence     function printMaxSumIs(arr,n)     {         // L[i] - The Maximum Sum Increasing         // Subsequence that ends with arr[i]                  let L = new Array(n);           for (let i = 0; i < n; i++)             L[i] = [];           // L[0] is equal to arr[0]         L[0].push(arr[0]);           // start from index 1         for (let i = 1; i < n; i++) {               // for every j less than i             for (let j = 0; j < i; j++) {                   /*                 * L[i] = {MaxSum(L[j])} + arr[i]                   where j < i and arr[j] < arr[i]                 */                 if ((arr[i] > arr[j])                     && (findSum(L[i]) < findSum(L[j])))                      {                     for (let k=0;k<L[j].length;k++)                         if (!L[i].includes(L[j][k]))                             L[i].push(L[j][k]);                 }             }               // L[i] ends with arr[i]             L[i].push(arr[i]);               // L[i] now stores Maximum Sum Increasing             // Subsequence of arr[0..i] that ends with             // arr[i]         }                   let res = L[0];         // res = L[0];               // find max         for (let x=0;x<L.length;x++)             if (findSum(L[x]) > findSum(res))                 res = L[x];           // max will contain result         for (let i=0;i<res.length;i++)             document.write(res[i] + " ");         document.write("<br>");     }           // Driver Code     let arr=[3, 2, 6, 4, 5, 1];     let n = arr.length;          // construct and print Max Sum IS of arr     printMaxSumIs(arr, n);       // This code is contributed by unknown2108  </script> 

Output
3 4 5


 We can optimize the above DP solution by removing findSum() function. Instead, we can maintain another vector/array to store sum of maximum sum increasing subsequence that ends with arr[i].

Time complexity of above Dynamic Programming solution is O(n2). 
Auxiliary space used by the program is O(n2).

Approach 2: (Using Dynamic Programming Using O(N) space

The above approach covered how to construct a Maximum Sum Increasing Subsequence in O(N2) time and O(N2) space. In this approach, we will optimize the Space complexity and construct the Maximum Sum Increasing Subsequence in O(N2)  time and O(N) space.

  • Let arr[0..n-1] be the input array.
  • We define a vector of pairs L such that L[i] first stores the Maximum Sum Increasing Subsequence of arr[0..i] that ends with arr[i] and L[i].second stores the index of the previous element used for generating the sum.
  • As the first element does not have any previous element hence its index would be -1 in L[0].

For example, 

array = [3, 2, 6, 4, 5, 1]

L[0]: {3, -1}
L[1]: {2, 1}
L[2]: {9, 0}
L[3]: {7, 0}
L[4]: {12, 3}
L[5]: {1, 5}

As we can see above, the value of the Maximum Sum Increasing Subsequence is 12. To construct the actual Subsequence we will use the index stored in L[i].second. The steps to construct the Subsequence is shown below: 

  • In a vector result, store the value of the element where the Maximum Sum Increasing Subsequence was found (i.e at currIndex = 4). So in the result vector, we will add arr[currIndex].
  • Update the currIndex to L[currIndex].second and repeat step 1 until currIndex is not -1 or it does not changes (i.e currIndex == previousIndex).
  • Display the elements of the result vector in reverse order.

Below is the implementation of the above idea : 

C++14
/* Dynamic Programming solution to construct Maximum Sum Increasing Subsequence */ #include <bits/stdc++.h> using namespace std;  // Function to construct and print the Maximum Sum // Increasing Subsequence void constructMaxSumIS(vector<int> arr, int n) {     // L[i] stores the value of Maximum Sum Increasing     // Subsequence that ends with arr[i] and the index of     // previous element used to construct the Subsequence     vector<pair<int, int> > L(n);      int index = 0;     for (int i : arr) {         L[index] = { i, index };         index++;     }      // Set L[0].second equal to -1     L[0].second = -1;      // start from index 1     for (int i = 1; i < n; i++) {         // for every j less than i         for (int j = 0; j < i; j++) {             if (arr[i] > arr[j]                 and L[i].first < arr[i] + L[j].first) {                 L[i].first = arr[i] + L[j].first;                 L[i].second = j;             }         }     }      int maxi = INT_MIN, currIndex, track = 0;      for (auto p : L) {         if (p.first > maxi) {             maxi = p.first;             currIndex = track;         }         track++;     }      // Stores the final Subsequence     vector<int> result;      // Index of previous element     // used to construct the Subsequence     int prevoiusIndex;      while (currIndex >= 0) {         result.push_back(arr[currIndex]);         prevoiusIndex = L[currIndex].second;          if (currIndex == prevoiusIndex)             break;          currIndex = prevoiusIndex;     }      for (int i = result.size() - 1; i >= 0; i--)         cout << result[i] << " "; }  // Driver Code int main() {     vector<int> arr = { 1, 101, 2, 3, 100, 4, 5 };     int n = arr.size();      // Function call     constructMaxSumIS(arr, n);      return 0; } 
Java
// Dynamic Programming solution to construct // Maximum Sum Increasing Subsequence  import java.util.*; import java.awt.Point;  class GFG{      // Function to construct and print the Maximum Sum // Increasing Subsequence static void constructMaxSumIS(List<Integer> arr, int n) {          // L.get(i) stores the value of Maximum Sum Increasing     // Subsequence that ends with arr.get(i) and the index of     // previous element used to construct the Subsequence     List<Point> L = new ArrayList<Point>();      int index = 0;     for(int i : arr)     {         L.add(new Point(i, index));         index++;     }      // Set L[0].second equal to -1     L.set(0, new Point(L.get(0).x, -1));      // Start from index 1     for(int i = 1; i < n; i++)     {                  // For every j less than i         for(int j = 0; j < i; j++)         {             if (arr.get(i) > arr.get(j) &&                 L.get(i).x < arr.get(i) +                 L.get(j).x)              {                 L.set(i, new Point(arr.get(i) +                                      L.get(j).x, j));             }         }     }      int maxi = -100000000, currIndex = 0, track = 0;      for(Point p : L)      {         if (p.x > maxi)         {             maxi = p.x;             currIndex = track;         }         track++;     }      // Stores the final Subsequence     List<Integer> result = new ArrayList<Integer>();      // Index of previous element     // used to construct the Subsequence     int prevoiusIndex;      while (currIndex >= 0)      {         result.add(arr.get(currIndex));         prevoiusIndex = L.get(currIndex).y;          if (currIndex == prevoiusIndex)             break;          currIndex = prevoiusIndex;     }      for(int i = result.size() - 1; i >= 0; i--)         System.out.print(result.get(i) + " "); }   // Driver Code public static void main(String []s) {     List<Integer> arr = new ArrayList<Integer>();     arr.add(1);     arr.add(101);     arr.add(2);     arr.add(3);     arr.add(100);     arr.add(4);     arr.add(5);          int n = arr.size();      // Function call     constructMaxSumIS(arr, n);  } }  // This code is contributed by rutvik_56  
Python
# Dynamic Programming solution to construct # Maximum Sum Increasing Subsequence  import sys  # Function to construct and print the Maximum Sum # Increasing Subsequence def constructMaxSumIS(arr, n) :      # L[i] stores the value of Maximum Sum Increasing     # Subsequence that ends with arr[i] and the index of     # previous element used to construct the Subsequence     L = []      index = 0     for i in arr :         L.append([i, index])         index += 1      # Set L[0].second equal to -1     L[0][1] = -1      # start from index 1     for i in range(1, n) :                # for every j less than i         for j in range(i) :             if (arr[i] > arr[j] and L[i][0] < arr[i] + L[j][0]) :                 L[i][0] = arr[i] + L[j][0]                 L[i][1] = j      maxi, currIndex, track = -sys.maxsize, 0, 0      for p in L :         if (p[0] > maxi) :             maxi = p[0]             currIndex = track              track += 1      # Stores the final Subsequence     result = []      while (currIndex >= 0) :         result.append(arr[currIndex])         prevoiusIndex = L[currIndex][1]          if (currIndex == prevoiusIndex) :             break          currIndex = prevoiusIndex      for i in range(len(result) - 1, -1, -1) :         print(result[i] , end = " ")   arr = [ 1, 101, 2, 3, 100, 4, 5 ] n = len(arr)  # Function call constructMaxSumIS(arr, n)  # This code is contributed by divyeshrabadiya07 
C#
/* Dynamic Programming solution to construct Maximum Sum Increasing Subsequence */ using System; using System.Collections.Generic;  class GFG  {          // Function to construct and print the Maximum Sum     // Increasing Subsequence     static void constructMaxSumIS(List<int> arr, int n)     {                // L[i] stores the value of Maximum Sum Increasing         // Subsequence that ends with arr[i] and the index of         // previous element used to construct the Subsequence         List<Tuple<int, int>> L = new List<Tuple<int, int>>();               int index = 0;         foreach(int i in arr) {             L.Add(new Tuple<int, int>(i, index));             index++;         }               // Set L[0].second equal to -1         L[0] = new Tuple<int, int>(L[0].Item1, -1);               // start from index 1         for (int i = 1; i < n; i++)         {                        // for every j less than i             for (int j = 0; j < i; j++)             {                 if (arr[i] > arr[j] &&                     L[i].Item1 < arr[i] +                     L[j].Item1)                  {                     L[i] = new Tuple<int,                    int>(arr[i] + L[j].Item1, j);                 }             }         }               int maxi = Int32.MinValue,        currIndex = 0, track = 0;               foreach(Tuple<int, int> p in L)          {             if (p.Item1 > maxi)             {                 maxi = p.Item1;                 currIndex = track;             }             track++;         }               // Stores the final Subsequence         List<int> result = new List<int>();               // Index of previous element         // used to construct the Subsequence         int prevoiusIndex;               while (currIndex >= 0)          {             result.Add(arr[currIndex]);             prevoiusIndex = L[currIndex].Item2;                   if (currIndex == prevoiusIndex)                 break;                   currIndex = prevoiusIndex;         }               for (int i = result.Count - 1; i >= 0; i--)             Console.Write(result[i] + " ");     }      static void Main()   {     List<int> arr = new List<int>(new                                    int[] { 1, 101, 2, 3, 100, 4, 5 });     int n = arr.Count;       // Function call     constructMaxSumIS(arr, n);    } }  // This code is contributed by divyesh072019 
JavaScript
<script>  // Dynamic Programming solution to construct // Maximum Sum Increasing Subsequence   // Function to construct and print the Maximum Sum // Increasing Subsequence function constructMaxSumIS(arr, n){      // L[i] stores the value of Maximum Sum Increasing     // Subsequence that ends with arr[i] and the index of     // previous element used to construct the Subsequence     let L = []      let index = 0     for(let i of arr){         L.push([i, index])         index += 1     }      // Set L[0].second equal to -1     L[0][1] = -1      // start from index 1     for(let i=1;i<n;i++){                // for every j less than i         for(let j=0;j<i;j++){             if (arr[i] > arr[j] && L[i][0] < arr[i] + L[j][0]){                 L[i][0] = arr[i] + L[j][0]                 L[i][1] = j             }         }     }      let maxi = Number.MIN_VALUE, currIndex = 0, track = 0      for(let p of L){         if (p[0] > maxi){             maxi = p[0]             currIndex = track         }              track += 1     }      // Stores the final Subsequence     let result = []      while (currIndex >= 0){         result.push(arr[currIndex])         let prevoiusIndex = L[currIndex][1]          if (currIndex == prevoiusIndex)             break          currIndex = prevoiusIndex     }      for(let i=result.length - 1;i>=0;i--)          document.write(result[i] ," ") }   let arr = [ 1, 101, 2, 3, 100, 4, 5 ] let n = arr.length  // Function call constructMaxSumIS(arr, n)  // This code is contributed by shinjanpatra  </script> 

Output
1 2 3 100

Time Complexity: O(N2)
Space Complexity: O(N)




Next Article
Printing Longest Increasing Subsequence (LIS)

A

Aditya Goel
Improve
Article Tags :
  • DSA
  • Dynamic Programming
Practice Tags :
  • Dynamic Programming

Similar Reads

  • Maximum Sum Increasing Subsequence
    Given an array arr[] of n positive integers. The task is to find the sum of the maximum sum subsequence of the given array such that the integers in the subsequence are sorted in strictly increasing order. Examples: Input: arr[] = [1, 101, 2, 3, 100]Output: 106Explanation: The maximum sum of a incre
    15+ min read
  • Maximum Sum Decreasing Subsequence
    Given an array of N positive integers. The task is to find the sum of the maximum sum decreasing subsequence(MSDS) of the given array such that the integers in the subsequence are sorted in decreasing order. Examples: Input: arr[] = {5, 4, 100, 3, 2, 101, 1} Output: 106 100 + 3 + 2 + 1 = 106 Input:
    7 min read
  • Printing Longest Increasing Subsequence (LIS)
    Given a sequence of numbers, the task is to find and print the Longest Increasing Subsequence (LIS), the longest subsequence where each element is strictly greater than the previous one. If multiple LIS of the same maximum length exist, we must select the one that appears first based on the lexicogr
    15+ min read
  • POTD Solutions | 23 Oct’ 23 | Maximum Sum Increasing Subsequence
    View all POTD Solutions Welcome to the daily solutions of our PROBLEM OF THE DAY (POTD). We will discuss the entire problem step-by-step and work towards developing an optimized solution. This will not only help you brush up on your concepts of Dynamic Programming but will also help you build up pro
    4 min read
  • Maximum sum alternating subsequence
    Given an array, the task is to find sum of maximum sum alternating subsequence starting with first element. Here alternating sequence means first decreasing, then increasing, then decreasing, ... For example 10, 5, 14, 3 is an alternating sequence. Note that the reverse type of sequence (increasing
    13 min read
  • Minimum number of increasing subsequences
    Given an array of integers of size N, you have to divide it into the minimum number of "strictly increasing subsequences" For example: let the sequence be {1, 3, 2, 4}, then the answer would be 2. In this case, the first increasing sequence would be {1, 3, 4} and the second would be {2}.Examples: In
    10 min read
  • Maximum even sum subsequence
    Given a array of n positive and negative integers, find the subsequence with the maximum even sum and display that even sum. Examples: Input: arr[] = {-2, 2, -3, 1, 3} Output: 6 Explanation: The longest subsequence with even sum is 2, 1 and 3. Input: arr[] = {-2, 2, -3, 4, 5} Output: 8 Explanation:
    6 min read
  • Maximum Sum Subsequence of length k
    Given an array sequence [A1, A2 ...An], the task is to find the maximum possible sum of increasing subsequence S of length k such that S1<=S2<=S3.........<=Sk. Examples: Input : n = 8 k = 3 A=[8 5 9 10 5 6 21 8] Output : 40 Possible Increasing subsequence of Length 3 with maximum possible s
    11 min read
  • Find heaviest increasing Subsequence with maximum sum in a String
    Given a string s and an array arr[] representing the weights of each character in the string, the task is to find the heaviest increasing subsequence with the maximum sum and return that subsequence. Examples: Input: s = "acbde", arr[] = {2, 4, 3, 5, 1}Output: acdExplanation: The heaviest increasing
    8 min read
  • Maximum Sum Subsequence
    Given an array arr[] of size N, the task is to find the maximum sum non-empty subsequence present in the given array. Examples: Input: arr[] = { 2, 3, 7, 1, 9 } Output: 22 Explanation: Sum of the subsequence { arr[0], arr[1], arr[2], arr[3], arr[4] } is equal to 22, which is the maximum possible sum
    5 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences