Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • DSA
  • Interview Problems on DP
  • Practice DP
  • MCQs on DP
  • Tutorial on Dynamic Programming
  • Optimal Substructure
  • Overlapping Subproblem
  • Memoization
  • Tabulation
  • Tabulation vs Memoization
  • 0/1 Knapsack
  • Unbounded Knapsack
  • Subset Sum
  • LCS
  • LIS
  • Coin Change
  • Word Break
  • Egg Dropping Puzzle
  • Matrix Chain Multiplication
  • Palindrome Partitioning
  • DP on Arrays
  • DP with Bitmasking
  • Digit DP
  • DP on Trees
  • DP on Graph
Open In App
Next Article:
Longest Subarray with 0 Sum
Next article icon

Print subarray with maximum sum

Last Updated : 11 Sep, 2024
Comments
Improve
Suggest changes
Like Article
Like
Report

Given an array arr[], the task is to print the subarray having maximum sum.

Examples:

Input: arr[] = {2, 3, -8, 7, -1, 2, 3}
Output: 11
Explanation: The subarray {7, -1, 2, 3} has the largest sum 11.

Input: arr[] = {-2, -5, 6, -2, -3, 1, 5, -6}
Output: {6, -2, -3, 1, 5}
Explanation: The subarray {6, -2, -3, 1, 5} has the largest sum of 7.

Table of Content

  • [Naive Approach] By iterating over all subarrays – O(n^2) Time and O(1) Space
  • [Expected Approach] Using Kadane’s Algorithm – O(n) Time and O(1) Space

[Naive Approach] By iterating over all subarrays – O(n^2) Time and O(1) Space

The idea is to run two nested loops to iterate over all possible subarrays and find the maximum sum. The outer loop will mark the starting point of a subarray and inner loop will mark the ending point of the subarray. At any time, if we find a subarray whose sum is greater than the maximum sum so far, then we will update the starting and ending point of the maximum sum subarray.

C++
// C++ Program to print subarray with maximum sum using nested loops   #include <bits/stdc++.h> using namespace std;  // Function to find the subarray with maximum sum vector<int> maxSumSubarray(vector<int> &arr) {          // start and end of max sum subarray     int resStart = 0, resEnd = 0;        // Initialize the maximum subarray sum with the first element     int maxSum = arr[0];      for (int i = 0; i < arr.size(); i++) {                  // Initialize current subarray sum with 0         int currSum = 0;         for(int j = i; j < arr.size(); j++) {             currSum += arr[j];                          // If current subarray has greater sum than maximum sum subarray,             // then update the start and end of maximum sum subarray             if(currSum > maxSum) {                 maxSum = currSum;                 resStart = i;               	resEnd = j;             }         }     }        vector<int> res;     for(int i = resStart; i <= resEnd; i++)         res.push_back(arr[i]);     return res; }  int main() {     vector<int> arr = {2, 3, -8, 7, -1, 2, 3};     vector<int> res = maxSumSubarray(arr);        for(int i = 0; i < res.size(); i++)         cout << res[i] << " ";        return 0; } 
Java
// Java Program to print subarray with maximum sum using nested loops   import java.util.ArrayList; import java.util.List;  class GfG {      // Function to find the subarray with maximum sum     static List<Integer> maxSumSubarray(int[] arr) {         // start and end of max sum subarray         int resStart = 0, resEnd = 0;                // Initialize the maximum subarray sum with the first element         int maxSum = arr[0];          for (int i = 0; i < arr.length; i++) {                          // Initialize current subarray sum with 0             int currSum = 0;             for (int j = i; j < arr.length; j++) {                 currSum += arr[j];                                  // If current subarray has greater sum than maximum sum subarray,                 // then update the start and end of maximum sum subarray                 if (currSum > maxSum) {                     maxSum = currSum;                     resStart = i;                     resEnd = j;                 }             }         }                List<Integer> res = new ArrayList<>();         for (int i = resStart; i <= resEnd; i++)             res.add(arr[i]);         return res;     }      public static void main(String[] args) {         int[] arr = {2, 3, -8, 7, -1, 2, 3};         List<Integer> res = maxSumSubarray(arr);                for (int num : res)             System.out.print(num + " ");         System.out.println();     } } 
Python
# Python Program to print subarray with maximum sum using nested loops  # Function to find the subarray with maximum sum def maxSumSubarray(arr):          # start and end of max sum subarray     resStart = 0     resEnd = 0        # Initialize the maximum subarray sum with the first element     maxSum = arr[0]      for i in range(len(arr)):                  # Initialize current subarray sum with 0         currSum = 0         for j in range(i, len(arr)):             currSum += arr[j]                          # If current subarray has greater sum than maximum sum subarray,             # then update the start and end of maximum sum subarray             if currSum > maxSum:                 maxSum = currSum                 resStart = i                 resEnd = j        res = []     for i in range(resStart, resEnd + 1):         res.append(arr[i])     return res   arr = [2, 3, -8, 7, -1, 2, 3] res = maxSumSubarray(arr)    for num in res:     print(num, end=" ") print() 
C#
// C# Program to print subarray with maximum sum using nested loops   using System; using System.Collections.Generic;  class GfG {          // Function to find the subarray with maximum sum     static List<int> maxSumSubarray(int[] arr) {                  // start and end of max sum subarray         int resStart = 0, resEnd = 0;          // Initialize the maximum subarray sum with the first element         int maxSum = arr[0];          for (int i = 0; i < arr.Length; i++) {                          // Initialize current subarray sum with 0             int currSum = 0;             for (int j = i; j < arr.Length; j++) {                 currSum += arr[j];                  // If current subarray has greater sum than maximum sum subarray,                 // then update the start and end of maximum sum subarray                 if (currSum > maxSum) {                     maxSum = currSum;                     resStart = i;                     resEnd = j;                 }             }         }          List<int> res = new List<int>();         for (int i = resStart; i <= resEnd; i++)             res.Add(arr[i]);          return res;     }      static void Main() {         int[] arr = { 2, 3, -8, 7, -1, 2, 3 };         List<int> res = maxSumSubarray(arr);          foreach (int num in res)             Console.Write(num + " ");         Console.WriteLine();     } } 
JavaScript
// Function to find the subarray with maximum sum function maxSumSubarray(arr) {     // start and end of max sum subarray     let resStart = 0, resEnd = 0;        // Initialize the maximum subarray sum with the first element     let maxSum = arr[0];      for (let i = 0; i < arr.length; i++) {                  // Initialize current subarray sum with 0         let currSum = 0;         for (let j = i; j < arr.length; j++) {             currSum += arr[j];                          // If current subarray has greater sum than maximum sum subarray,             // then update the start and end of maximum sum subarray             if (currSum > maxSum) {                 maxSum = currSum;                 resStart = i;                 resEnd = j;             }         }     }        let res = [];     for (let i = resStart; i <= resEnd; i++)         res.push(arr[i]);     return res; }  // Example usage const arr = [2, 3, -8, 7, -1, 2, 3]; const res = maxSumSubarray(arr);  console.log(res.join(" ")); 

Output
7 -1 2 3 

Time complexity: O(n2), as we are iterating over all possible subarrays.
Auxiliary Space: O(1)

[Expected Approach] Using Kadane’s Algorithm – O(n) Time and O(1) Space

The idea is similar to Kadane’s Algorithm with the only difference that here, we need to keep track of the start and end of the subarray with maximum sum, that is the result array. Iterate over the array keeping track of the start and end of current subarray and at any point, if the sum of current subarray becomes greater than the result array, update the result array with the current subarray.

For each element, we have two choices:

  • Choice 1: Extend the maximum sum subarray ending at the previous element by adding the current element to it. In this case, the ending index of the current subarray increases by 1.
  • Choice 2: Start a new subarray starting from the current element. In this case, the starting index of the current subarray updates to the current index.

If the maximum sum ending at an element becomes greater than the result array, we update the start and end of result subarray with the start and end of current subarray respectively.

C++
// C++ Program to print subarray with maximum sum using Kadane's Algorithm  #include <bits/stdc++.h> using namespace std;  // Function to find the subarray with maximum sum vector<int> maxSumSubarray(vector<int> &arr) {          // start and end of max sum subarray     int resStart = 0, resEnd = 0;        // start of current subarray     int currStart = 0;        int maxSum = arr[0];     int maxEnding = arr[0];      for (int i = 1; i < arr.size(); i++) {                // If starting a new subarray from the current element          // has greater sum than extending the previous subarray         if(maxEnding + arr[i] < arr[i]) {                          // Update current subarray sum with current element              // and start of current subarray with current index         	maxEnding = arr[i];              currStart = i;         }         else {                        // Add current element to current subarray sum             maxEnding += arr[i];         }                // If current subarray sum is greater than maximum subarray sum         if(maxEnding > maxSum) {                        // Update maximum subarray sum             maxSum = maxEnding;                        // Update start and end of maximum sum subarray          	resStart = currStart;             resEnd = i;         }     }        vector<int> res;     for(int i = resStart; i <= resEnd; i++)         res.push_back(arr[i]);     return res; }  int main() {     vector<int> arr = {2, 3, -8, 7, -1, 2, 3};     vector<int> res = maxSumSubarray(arr);        for(int i = 0; i < res.size(); i++)         cout << res[i] << " ";        return 0; } 
C
// C Program to print subarray with maximum sum using Kadane's Algorithm  #include <stdio.h> #include <limits.h>  // Function to find the subarray with maximum sum void maxSumSubarray(int arr[], int size, int* start, int* end,                      					int* res, int* resSize) {     // start and end of max sum subarray     int resStart = 0, resEnd = 0;        // start of current subarray     int currStart = 0;        int maxSum = arr[0];     int maxEnding = arr[0];      for (int i = 1; i < size; i++) {                // If starting a new subarray from the current element          // has greater sum than extending the previous subarray         if (maxEnding + arr[i] < arr[i]) {                          // Update current subarray sum with current element              // and start of current subarray with current index             maxEnding = arr[i];              currStart = i;         }          else {                        // Add current element to current subarray sum             maxEnding += arr[i];         }                // If current subarray sum is greater than maximum subarray sum         if (maxEnding > maxSum) {                        // Update maximum subarray sum             maxSum = maxEnding;                        // Update start and end of maximum sum subarray              resStart = currStart;             resEnd = i;         }     }        *start = resStart;     *end = resEnd;      *resSize = resEnd - resStart + 1;     for (int i = 0; i < *resSize; i++) {         res[i] = arr[resStart + i];     } }  int main() {     int arr[] = {2, 3, -8, 7, -1, 2, 3};     int size = sizeof(arr) / sizeof(arr[0]);      int start, end, resSize;     int res[size];      maxSumSubarray(arr, size, &start, &end, res, &resSize);        for (int i = 0; i < resSize; i++) {         printf("%d ", res[i]);     }        return 0; } 
Java
// Java Program to print subarray with maximum sum using Kadane's Algorithm  import java.util.ArrayList; import java.util.List;  class GfG {      // Function to find the sum of contiguous subarray with maximum sum     static List<Integer> maxSumSubarray(int[] arr) {                  // start and end of max sum subarray         int resStart = 0, resEnd = 0;                // start of current subarray         int currStart = 0;                int maxSum = arr[0];         int maxEnding = arr[0];          for (int i = 1; i < arr.length; i++) {                          // If starting a new subarray from the current element              // has greater sum than extending the previous subarray             if (maxEnding + arr[i] < arr[i]) {                                  // Update current subarray sum with current element                  // and start of current subarray with current index                 maxEnding = arr[i];                 currStart = i;             }              else {                                  // Add current element to current subarray sum                 maxEnding += arr[i];             }                        // If current subarray sum is greater than maximum subarray sum             if (maxEnding > maxSum) {                                  // Update maximum subarray sum                 maxSum = maxEnding;                                  // Update start and end of maximum sum subarray                 resStart = currStart;                 resEnd = i;             }         }                List<Integer> res = new ArrayList<>();         for (int i = resStart; i <= resEnd; i++)             res.add(arr[i]);         return res;     }      public static void main(String[] args) {         int[] arr = {2, 3, -8, 7, -1, 2, 3};         List<Integer> res = maxSumSubarray(arr);                for (int i = 0; i < res.size(); i++)             System.out.print(res.get(i) + " ");     } } 
Python
# Python Program to print subarray with maximum sum using Kadane's Algorithm  # Function to find the subarray with maximum sum def maxSumSubarray(arr):          # start and end of max sum subarray     resStart = 0     resEnd = 0        # start of current subarray     currStart = 0        maxSum = arr[0]     maxEnding = arr[0]      for i in range(1, len(arr)):                # If starting a new subarray from the current element          # has greater sum than extending the previous subarray         if maxEnding + arr[i] < arr[i]:                          # Update current subarray sum with current element              # and start of current subarray with current index             maxEnding = arr[i]              currStart = i         else:                        # Add current element to current subarray sum             maxEnding += arr[i]                # If current subarray sum is greater than maximum subarray sum         if maxEnding > maxSum:                        # Update maximum subarray sum             maxSum = maxEnding                        # Update start and end of maximum sum subarray              resStart = currStart             resEnd = i        res = arr[resStart:resEnd + 1]     return res  if __name__ == "__main__":     arr = [2, 3, -8, 7, -1, 2, 3]     res = maxSumSubarray(arr)        for num in res:         print(num, end=" ") 
C#
// C# Program to print subarray with maximum sum using Kadane's Algorithm  using System; using System.Collections.Generic;  class GfG {          // Function to find the subarray with maximum sum     static List<int> MaxSumSubarray(List<int> arr) {                  // start and end of max sum subarray         int resStart = 0, resEnd = 0;                // start of current subarray         int currStart = 0;                int maxSum = arr[0];         int maxEnding = arr[0];          for (int i = 1; i < arr.Count; i++) {                          // If starting a new subarray from the current element              // has greater sum than extending the previous subarray             if (maxEnding + arr[i] < arr[i]) {                                  // Update current subarray sum with current element                  // and start of current subarray with current index                 maxEnding = arr[i];                 currStart = i;             }             else {                                  // Add current element to current subarray sum                 maxEnding += arr[i];             }                        // If current subarray sum is greater than maximum subarray sum             if (maxEnding > maxSum) {                                  // Update maximum subarray sum                 maxSum = maxEnding;                                // Update start and end of maximum sum subarray                  resStart = currStart;                 resEnd = i;             }         }                List<int> res = new List<int>();         for (int i = resStart; i <= resEnd; i++)             res.Add(arr[i]);         return res;     }      static void Main() {         List<int> arr = new List<int> { 2, 3, -8, 7, -1, 2, 3 };         List<int> res = MaxSumSubarray(arr);                for (int i = 0; i < res.Count; i++) {             Console.Write(res[i] + " ");         }     } } 
JavaScript
// JavaScript Program to print subarray with maximum sum using Kadane's Algorithm  // Function to find the subarray with maximum sum function maxSumSubarray(arr) {          // start and end of max sum subarray     let resStart = 0, resEnd = 0;        // start of current subarray     let currStart = 0;        let maxSum = arr[0];     let maxEnding = arr[0];      for (let i = 1; i < arr.length; i++) {                // If starting a new subarray from the current element          // has greater sum than extending the previous subarray         if (maxEnding + arr[i] < arr[i]) {                          // Update current subarray sum with current element              // and start of current subarray with current index             maxEnding = arr[i];             currStart = i;         } else {                        // Add current element to current subarray sum             maxEnding += arr[i];         }                // If current subarray sum is greater than maximum subarray sum         if (maxEnding > maxSum) {                        // Update maximum subarray sum             maxSum = maxEnding;                        // Update start and end of maximum sum subarray              resStart = currStart;             resEnd = i;         }     }        let res = [];     for (let i = resStart; i <= resEnd; i++) {         res.push(arr[i]);     }     return res; }  let arr = [2, 3, -8, 7, -1, 2, 3]; let res = maxSumSubarray(arr);  console.log(res.join(" ")); 

Output
7 -1 2 3 

Time Complexity: O(n), as we are traversing the array only once.
Auxiliary Space: O(1)



Next Article
Longest Subarray with 0 Sum

C

chirags_30
Improve
Article Tags :
  • Arrays
  • DSA
  • Dynamic Programming
  • Algorithms-Dynamic Programming
  • Arrays
  • Kadane
  • subarray
  • subarray-sum
Practice Tags :
  • Arrays
  • Arrays
  • Dynamic Programming
  • Kadane

Similar Reads

  • Size of The Subarray With Maximum Sum
    Given an array arr[] of size N, the task is to find the length of the subarray having maximum sum. Examples : Input : a[] = {1, -2, 1, 1, -2, 1} Output : Length of the subarray is 2 Explanation : Subarray with consecutive elements and maximum sum will be {1, 1}. So length is 2 Input : ar[] = { -2, -
    10 min read
  • Longest Subarray with 0 Sum
    Given an array arr[] of size n, the task is to find the length of the longest subarray with sum equal to 0. Examples: Input: arr[] = {15, -2, 2, -8, 1, 7, 10, 23}Output: 5Explanation: The longest subarray with sum equals to 0 is {-2, 2, -8, 1, 7} Input: arr[] = {1, 2, 3}Output: 0Explanation: There i
    10 min read
  • Minimize the maximum subarray sum with 1s and -2s
    Given two integers X and Y. X and Y represent the frequency of elements 1 and -2 you have. You have to arrange all elements such that the maximum sum over all subarrays is minimized, and then find the maximum subarray sum of such rearrangement. Examples: Input: X = 1, Y = 1Output: 1Explanation: X =
    5 min read
  • Number of pairs with maximum sum
    Given an array arr[], count number of pairs arr[i], arr[j] such that arr[i] + arr[j] is maximum and i < j. Example : Input : arr[] = {1, 1, 1, 2, 2, 2} Output : 3 Explanation: The maximum possible pair sum where i<j is 4, which is given by 3 pairs, so the answer is 3 the pairs are (2, 2), (2,
    11 min read
  • CSES Solutions - Maximum Subarray Sum
    Given an array arr[] of N integers, your task is to find the maximum sum of values in a contiguous, nonempty subarray. Examples: Input: N = 8, arr[] = {-1, 3, -2, 5, 3, -5, 2, 2}Output: 9Explanation: The subarray with maximum sum is {3, -2, 5, 3} with sum = 3 - 2 + 5 + 3 = 9. Input: N = 6, arr[] = {
    5 min read
  • Maximum subarray sum modulo m
    Given an array of n elements and an integer m. The task is to find the maximum value of the sum of its subarray modulo m i.e find the sum of each subarray mod m and print the maximum value of this modulo operation. Examples: Input: arr[] = {10, 7, 18}, m = 13Output: 12Explanation: All subarrays and
    7 min read
  • Maximum Subarray Sum of Alternate Parity
    Given array A[] of size N. The Task for this problem is to find the maximum subarray (Subarrays are arrays within another array. Subarrays contain contiguous elements) sum such that adjacent elements of the subarray should have different parity. Examples: Input: A[] = {-1, 4, -1, 0, 5, -4} Output: 8
    7 min read
  • Maximum subarray sum in O(n) using prefix sum
    Given an Array of Positive and Negative Integers, find out the Maximum Subarray Sum in that Array. Examples: Input1 : arr = {-2, -3, 4, -1, -2, 1, 5, -3} Output1 : 7 Input2 : arr = {4, -8, 9, -4, 1, -8, -1, 6} Output2 : 9 Kadane's Algorithm solves this problem using Dynamic Programming approach in l
    8 min read
  • Maximum sum bitonic subarray
    Given an array containing n numbers. The problem is to find the maximum sum bitonic subarray. A bitonic subarray is a subarray in which elements are first increasing and then decreasing. A strictly increasing or strictly decreasing subarray is also considered a bitonic subarray. Time Complexity of O
    15+ min read
  • CSES Solutions - Maximum Subarray Sum II
    Given an array arr[] of N integers, your task is to find the maximum sum of values in a contiguous subarray with length between A and B. Examples: Input: N = 8, A = 1, B = 2, arr[] = {-1, 3, -2, 5, 3, -5, 2, 2}Output: 8Explanation: The subarray with maximum sum is {5, 3}, the length between 1 and 2,
    12 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences