Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • DSA
  • Interview Problems on Tree
  • Practice Tree
  • MCQs on Tree
  • Tutorial on Tree
  • Types of Trees
  • Basic operations
  • Tree Traversal
  • Binary Tree
  • Complete Binary Tree
  • Ternary Tree
  • Binary Search Tree
  • Red-Black Tree
  • AVL Tree
  • Full Binary Tree
  • B-Tree
  • Advantages & Disadvantages
Open In App
Next Article:
Print all internal nodes of a Binary tree
Next article icon

Print Nodes in Top View of Binary Tree

Last Updated : 23 Dec, 2024
Comments
Improve
Suggest changes
Like Article
Like
Report
Try it on GfG Practice
redirect icon

Given a binary tree. The task is to find the top view of the binary tree. The top view of a binary tree is the set of nodes visible when the tree is viewed from the top.

Note: 

  • Return the nodes from the leftmost node to the rightmost node.
  • If two nodes are at the same position (horizontal distance) and are outside the shadow of the tree, consider the leftmost node only. 

Examples:

Example 1: The Green colored nodes represents the top view in the below Binary tree.

top_view_example1


Example 2: The Green colored nodes represents the top view in the below Binary tree.

Print-Nodes-in-Top-View-of-Binary-Tree-4

Top view for example 2

Table of Content

  • Using DFS – O(n * log n) Time and O(n) Space
  • Using BFS – O(n * log n) Time and O(n) Space
  • Optimized Approach Using BFS – O(n) Time and O(n) Space

Using DFS – O(n * log n) Time and O(n) Space

The idea is to use a Depth-First Search (DFS) approach to find the top view of a binary tree. We keep track of horizontal distance from root node. Start from the root node with a distance of 0. When we move to left child we subtract 1 and add 1 when we move to right child to distance of the current node. We use a HashMap to store the top most node that appears at a given horizontal distance. As we traverse the tree, we check if there is any node at current distance in hashmap . If it’s the first node encountered at its horizontal distance ,we include it in the top view.

C++
// C++ program to print top // view of binary tree // using dfs  #include <bits/stdc++.h> using namespace std;  class Node { public:     int data;     Node* left;     Node* right;      Node(int val) {         data = val;         left = right = nullptr;     } };  // DFS Helper to store top view nodes void dfs(Node* node, int hd, int level,           map<int, pair<int, int>>& topNodes) {        if (!node) return;      // If horizontal distance is encountered for      // the first time or if it's at a higher level     if (topNodes.find(hd) == topNodes.end() ||          topNodes[hd].second > level) {         topNodes[hd] = {node->data, level};     }      // Recur for left and right subtrees     dfs(node->left, hd - 1, level + 1, topNodes);     dfs(node->right, hd + 1, level + 1, topNodes); }  // DFS Approach to find the top view of a binary tree vector<int> topView(Node* root) {     vector<int> result;     if (!root) return result;          // Horizontal distance -> {node's value, level}     map<int, pair<int, int>> topNodes;           // Start DFS traversal     dfs(root, 0, 0, topNodes);      // Collect nodes from the map     for (auto it : topNodes) {         result.push_back(it.second.first);     }      return result; }   int main() {        // Create a sample binary tree   //     1   //    / \   //   2   3   //  / \ / \   // 4  5 6  7      Node* root = new Node(1);     root->left = new Node(2);            root->right = new Node(3);                 root->left->left = new Node(4);          root->left->right = new Node(5);        root->right->left = new Node(6);        root->right->right = new Node(7);       vector<int> result = topView(root);     for (int i : result) {         cout << i << " ";     }     return 0; } 
Java
// Java program to print  // top view of binary tree // using dfs import java.util.*;  class Node {     int data;     Node left, right;      public Node(int val) {         data = val;         left = right = null;     } }  class Pair<u, v> {     public u first;     public v second;      public Pair(u first, v second) {         this.first = first;         this.second = second;     }      public u getKey() {         return first;     }      public v getValue() {         return second;     } }  class GfG {      // DFS Helper to store top view nodes     static void dfs(Node node, int hd, int level,                      Map<Integer, Pair<Integer, Integer>> topNodes) {         if (node == null) return;          // If horizontal distance is encountered for          // the first time or if it's at a higher level         if (!topNodes.containsKey(hd) ||             topNodes.get(hd).getValue() > level) {                        topNodes.put(hd, new Pair<>(node.data, level));         }          // Recur for left and right subtrees         dfs(node.left, hd - 1, level + 1, topNodes);         dfs(node.right, hd + 1, level + 1, topNodes);     }      // DFS Approach to find the top view of a binary tree     static ArrayList<Integer> topView(Node root) {         ArrayList<Integer> result = new ArrayList<>();         if (root == null) return result;                  // Horizontal distance -> {node's value, level}         Map<Integer, Pair<Integer, Integer>> topNodes = new TreeMap<>();          // Start DFS traversal         dfs(root, 0, 0, topNodes);          // Collect nodes from the map         for (Pair<Integer, Integer> value : topNodes.values()) {             result.add(value.getKey());         }          return result;     }      public static void main(String[] args) {                  // Create a sample binary tree         //     1         //    / \         //   2   3         //  / \ / \         // 4  5 6  7          Node root = new Node(1);         root.left = new Node(2);         root.right = new Node(3);         root.left.left = new Node(4);         root.left.right = new Node(5);         root.right.left = new Node(6);         root.right.right = new Node(7);          ArrayList<Integer> result = topView(root);         for (int i : result) {             System.out.print(i + " ");         }     } } 
Python
# Python program to print  # top view of binary tree # using dfs class Node:     def __init__(self, val):         self.data = val         self.left = None         self.right = None  def dfs(node, hd, level, top_nodes):     if not node:         return      # If horizontal distance is encountered for      # the first time or if it's at a higher level     if hd not in top_nodes or top_nodes[hd][1] > level:         top_nodes[hd] = (node.data, level)      # Recur for left and right subtrees     dfs(node.left, hd - 1, level + 1, top_nodes)     dfs(node.right, hd + 1, level + 1, top_nodes)  # DFS Approach to find the top view of a binary tree def topView(root):     result = []     if not root:         return result          # Horizontal distance -> (node's value, level)     top_nodes = {}      # Start DFS traversal     dfs(root, 0, 0, top_nodes)      # Collect nodes from the map     for key in sorted(top_nodes):         result.append(top_nodes[key][0])      return result   if __name__ == "__main__":          # Create a sample binary tree     #     1     #    / \     #   2   3     #  / \ / \     # 4  5 6  7      root = Node(1)     root.left = Node(2)     root.right = Node(3)     root.left.left = Node(4)     root.left.right = Node(5)     root.right.left = Node(6)     root.right.right = Node(7)      result = topView(root)     print(" ".join(map(str, result))) 
C#
// C# program to print  // top view of binary tree // using dfs using System; using System.Collections.Generic;  class Node {     public int data;     public Node left, right;      public Node(int val) {         data = val;         left = right = null;     } }  class GfG {      // DFS Helper to store top view nodes     static void Dfs(Node node, int hd, int level,                      SortedDictionary<int, Tuple<int, int>> topNodes) {         if (node == null) return;          // If horizontal distance is encountered for          // the first time or if it's at a higher level         if (!topNodes.ContainsKey(hd) || topNodes[hd].Item2 > level) {             topNodes[hd] = new Tuple<int, int>(node.data, level);         }          // Recur for left and right subtrees         Dfs(node.left, hd - 1, level + 1, topNodes);         Dfs(node.right, hd + 1, level + 1, topNodes);     }      // DFS Approach to find the top view of a binary tree     static List<int> topView(Node root) {         var result = new List<int>();         if (root == null) return result;                  // Horizontal distance -> (node's value, level)         var topNodes = new SortedDictionary<int, Tuple<int, int>>();          // Start DFS traversal         Dfs(root, 0, 0, topNodes);          // Collect nodes from the map         foreach (var value in topNodes.Values) {             result.Add(value.Item1);         }          return result;     }      static void Main(string[] args) {                  // Create a sample binary tree         //     1         //    / \         //   2   3         //  / \ / \         // 4  5 6  7          Node root = new Node(1);         root.left = new Node(2);         root.right = new Node(3);         root.left.left = new Node(4);         root.left.right = new Node(5);         root.right.left = new Node(6);         root.right.right = new Node(7);          List<int> result = topView(root);         Console.WriteLine(string.Join(" ", result));     } } 
JavaScript
// JavaScript program to print  // top view of binary tree // using dfs class Node {     constructor(val) {         this.data = val;         this.left = null;         this.right = null;     } }  function dfs(node, hd, level, topNodes) {     if (!node) return;      // If horizontal distance is encountered for      // the first time or if it's at a higher level     if (!(hd in topNodes) || topNodes[hd][1] > level) {         topNodes[hd] = [node.data, level];     }      // Recur for left and right subtrees     dfs(node.left, hd - 1, level + 1, topNodes);     dfs(node.right, hd + 1, level + 1, topNodes); }  // DFS Approach to find the top view of a binary tree function topView(root) {     let result = [];     if (!root) return result;          // Horizontal distance -> [node's value, level]     let topNodes = {};      // Start DFS traversal     dfs(root, 0, 0, topNodes);      // Collect nodes from the map     for (let key of Object.keys(topNodes).sort((a, b) => a - b)) {         result.push(topNodes[key][0]);     }      return result; }  // driver code // Create a sample binary tree //     1 //    / \ //   2   3 //  / \ / \ // 4  5 6  7  const root = new Node(1); root.left = new Node(2); root.right = new Node(3); root.left.left = new Node(4); root.left.right = new Node(5); root.right.left = new Node(6); root.right.right = new Node(7);  const result = topView(root); console.log(result.join(" ")); 

Output
4 2 1 3 7 

Using BFS – O(n * log n) Time and O(n) Space

The idea is similar to Vertical Order Traversal. Like vertical Order Traversal, we need to put nodes of the same horizontal distance together. We just do a level order traversal (bfs) instead of dfs so that the topmost node at a horizontal distance is visited before any other node of the same horizontal distance below it.

C++
// C++ program to print top // view of binary tree // using bfs #include <bits/stdc++.h> using namespace std;  class Node { public:     int data;        Node* left;     Node* right;      Node(int val) {         data = val;         left = right = nullptr;     } };  // Function to return the top view of a binary tree vector<int> topView(Node *root) {     vector<int> result;     if (!root) return result;      // Map to store the first node at each    	// horizontal distance (hd)     map<int, int> topNodes;          // Queue to store nodes along with their     // horizontal distance     queue<pair<Node*, int>> q;      // Start BFS with the root node at      // horizontal distance 0     q.push({root, 0});      while (!q.empty()) {                  auto nodeHd = q.front();                  // Current node         Node *node = nodeHd.first;                    // Current horizontal distance         int hd = nodeHd.second;              q.pop();          // If this horizontal distance is seen for the first       	// time, store the node         if (topNodes.find(hd) == topNodes.end()) {             topNodes[hd] = node->data;         }          // Add left child to the queue with horizontal       	// distance - 1         if (node->left) {             q.push({node->left, hd - 1});         }          // Add right child to the queue with          // horizontal distance + 1         if (node->right) {             q.push({node->right, hd + 1});         }     }      // Extract the nodes from the map in sorted order    	// of their horizontal distances     for (auto it : topNodes) {         result.push_back(it.second);     }      return result; }   int main() {          // Create a sample binary tree     //     1     //    / \     //   2   3     //  / \ / \     // 4  5 6  7      Node* root = new Node(1);     root->left = new Node(2);            root->right = new Node(3);                 root->left->left = new Node(4);          root->left->right = new Node(5);        root->right->left = new Node(6);        root->right->right = new Node(7);       vector<int> result = topView(root);     for (int i : result) {         cout << i << " ";     }     return 0; } 
Java
// Java program to print top // view of binary tree // using bfs import java.util.*;  class Node {     int data;     Node left, right;      Node(int val) {         data = val;         left = right = null;     } }  // Function to return the top view of a binary tree class GfG {      static ArrayList<Integer> topView(Node root) {         ArrayList<Integer> result = new ArrayList<>();         if (root == null) return result;          // Map to store the first node at each        	// horizontal distance (hd)         Map<Integer, Integer> topNodes = new TreeMap<>();          // Queue to store nodes along with their horizontal distance         Queue<Map.Entry<Node, Integer>> q = new LinkedList<>();          // Start BFS with the root node at horizontal distance 0         q.add(new AbstractMap.SimpleEntry<>(root, 0));          while (!q.isEmpty()) {             Map.Entry<Node, Integer> nodeHd = q.poll();              // Current node             Node node = nodeHd.getKey();              // Current horizontal distance             int hd = nodeHd.getValue();              // If this horizontal distance is seen for           	// the first time, store the node             if (!topNodes.containsKey(hd)) {                 topNodes.put(hd, node.data);             }              // Add left child to the queue with horizontal distance - 1             if (node.left != null) {                 q.add(new AbstractMap.SimpleEntry<>(node.left, hd - 1));             }              // Add right child to the queue with horizontal           	// distance + 1             if (node.right != null) {                 q.add(new AbstractMap.SimpleEntry<>(node.right, hd + 1));             }         }          // Extract the nodes from the map in sorted order       	// of their horizontal distances         for (Integer value : topNodes.values()) {             result.add(value);         }          return result;     }      public static void main(String[] args) {          // Create a sample binary tree         //     1         //    / \         //   2   3         //  / \ / \         // 4  5 6  7          Node root = new Node(1);         root.left = new Node(2);         root.right = new Node(3);         root.left.left = new Node(4);         root.left.right = new Node(5);         root.right.left = new Node(6);         root.right.right = new Node(7);          ArrayList<Integer> result = topView(root);        	for (int i : result) {             System.out.print(i + " ");         }     } } 
Python
# Python program to print top # view of binary tree # using bfs from collections import deque  class Node:     def __init__(self, val):         self.data = val         self.left = None         self.right = None  # Function to return the top view of # a binary tree def topView(root):     result = []     if not root:         return result      # Map to store the first node at each     # horizontal distance (hd)     topNodes = {}      # Queue to store nodes along with their horizontal distance     q = deque([(root, 0)])      # Start BFS with the root node at horizontal distance 0     while q:         node, hd = q.popleft()          # If this horizontal distance is seen for the          # first time, store the node         if hd not in topNodes:             topNodes[hd] = node.data          # Add left child to the queue with horizontal         # distance - 1         if node.left:             q.append((node.left, hd - 1))          # Add right child to the queue with horizontal         # distance + 1         if node.right:             q.append((node.right, hd + 1))      # Extract the nodes from the map in sorted order of     # their horizontal distances     for key in sorted(topNodes.keys()):         result.append(topNodes[key])      return result       if __name__ == "__main__":      # Create a sample binary tree     #     1     #    / \     #   2   3     #  / \ / \     # 4  5 6  7      root = Node(1)     root.left = Node(2)     root.right = Node(3)     root.left.left = Node(4)     root.left.right = Node(5)     root.right.left = Node(6)     root.right.right = Node(7)      result = topView(root)     print(" ".join(map(str, result))) 
C#
// C# program to print top // view of binary tree // using bfs using System; using System.Collections.Generic;  class Node {     public int data;     public Node left, right;      public Node(int val) {         data = val;         left = right = null;     } }  class GfG {        // Function to return the top view of a binary tree     static List<int> topView(Node root) {         List<int> result = new List<int>();         if (root == null)             return result;          // Map to store the first node at each horizontal         // distance (hd)         SortedDictionary<int, int> topNodes             = new SortedDictionary<int, int>();          // Queue to store nodes along with their horizontal         // distance         Queue<KeyValuePair<Node, int> > q             = new Queue<KeyValuePair<Node, int> >();          // Start BFS with the root node at horizontal         // distance 0         q.Enqueue(new KeyValuePair<Node, int>(root, 0));          while (q.Count > 0) {             var nodeHd = q.Dequeue();              // Current node             Node node = nodeHd.Key;              // Current horizontal distance             int hd = nodeHd.Value;              // If this horizontal distance is seen for the             // first time, store the node             if (!topNodes.ContainsKey(hd)) {                 topNodes[hd] = node.data;             }              // Add left child to the queue with horizontal             // distance - 1             if (node.left != null) {                 q.Enqueue(new KeyValuePair<Node, int>(                     node.left, hd - 1));             }              // Add right child to the queue with horizontal             // distance + 1             if (node.right != null) {                 q.Enqueue(new KeyValuePair<Node, int>(                     node.right, hd + 1));             }         }          // Extract the nodes from the map in sorted order of         // their horizontal distances         foreach(var item in topNodes) {             result.Add(item.Value);         }          return result;     }      static void Main(string[] args) {                // Create a sample binary tree         //     1         //    / \         //   2   3         //  / \ / \         // 4  5 6  7          Node root = new Node(1);         root.left = new Node(2);         root.right = new Node(3);         root.left.left = new Node(4);         root.left.right = new Node(5);         root.right.left = new Node(6);         root.right.right = new Node(7);          List<int> result = topView(root);          foreach(int val in result) {             Console.Write(val + " ");         }     } } 
JavaScript
// JavaScript program to print top // view of binary tree // using bfs class Node {     constructor(val) {         this.data = val;         this.left = null;         this.right = null;     } }  // Function to return the top view of // a binary tree function topView(root) {     let result = [];     if (!root) return result;      // Map to store the first node at each      // horizontal distance (hd)     let topNodes = new Map();      // Queue to store nodes along with their     // horizontal distance     let q = [];     q.push([root, 0]);      // Start BFS with the root node at horizontal distance 0     while (q.length > 0) {         let [node, hd] = q.shift();          // If this horizontal distance is seen for the         // first time, store the node         if (!topNodes.has(hd)) {             topNodes.set(hd, node.data);         }          // Add left child to the queue with horizontal         // distance - 1         if (node.left) {             q.push([node.left, hd - 1]);         }          // Add right child to the queue with horizontal         // distance + 1         if (node.right) {             q.push([node.right, hd + 1]);         }     }      // Extract the nodes from the map in sorted order of their     // horizontal distances     for (let [key, value] of [...topNodes.entries()].sort((a, b) => a[0] - b[0])) {         result.push(value);     }      return result; }  //driver code // Create a sample binary tree //     1 //    / \ //   2   3 //  / \ / \ // 4  5 6  7  let root = new Node(1); root.left = new Node(2); root.right = new Node(3); root.left.left = new Node(4); root.left.right = new Node(5); root.right.left = new Node(6); root.right.right = new Node(7);  let result = topView(root); console.log(result.join(" ")); 

Output
4 2 1 3 7 

Optimized Approach Using BFS – O(n) Time and O(n) Space

A queue is used to perform level-order traversal, storing each node along with its corresponding horizontal distance from the root. hashmap keeps track of the topmost node at every horizontal distance. During traversal, if a node at a given horizontal distance is encountered for the first time, it is added to the map.

Additionally, the minimum horizontal distance (mn) is updated to organize the result. After completing the traversal, the map’s values are transferred to a result array, adjusting indices based on mn to ensure the nodes are arranged correctly from leftmost to rightmost in the top view. BFS approach ensures that nodes closer to the root and encountered first are prioritized in the top view.

C++
// C++ program to print top view of binary tree // optimally using bfs  #include <bits/stdc++.h> using namespace std;  class Node {   public:     int data;     Node *left;     Node *right;      Node(int val) {         data = val;         left = right = nullptr;     } };  // Function to return a list of nodes visible // from the top view from left to right in Binary Tree. vector<int> topView(Node *root) {        // base case     if (root ==  nullptr) {         return {};     }     Node *temp = nullptr;        // creating empty queue for level order traversal.     queue<pair<Node *, int>> q;        // creating a map to store nodes at a     // particular horizontal distance.     unordered_map<int, int> mp;      int mn = INT_MAX;     q.push({root, 0});     while (!q.empty()) {                temp = q.front().first;         int d = q.front().second;         mn = min(mn, d);         q.pop();                // storing temp->data in map.         if (mp.find(d) == mp.end()) {             mp[d] = temp->data;         }                // if left child of temp exists, pushing it in         // the queue with the horizontal distance.         if (temp->left) {             q.push({temp->left, d - 1});         }                // if right child of temp exists, pushing it in         // the queue with the horizontal distance.         if (temp->right) {             q.push({temp->right, d + 1});         }     }     vector<int> ans(mp.size());        // traversing the map and storing the nodes in list     // at every horizontal distance.     for (auto it = mp.begin(); it != mp.end(); it++) {         ans[it->first - mn] = (it->second);     }        return ans; }  int main() {      // Create a sample binary tree     //     1     //    / \     //   2   3     //  / \ / \     // 4  5 6  7      Node *root = new Node(1);     root->left = new Node(2);     root->right = new Node(3);     root->left->left = new Node(4);     root->left->right = new Node(5);     root->right->left = new Node(6);     root->right->right = new Node(7);      vector<int> result = topView(root);     for (int i : result) {         cout << i << " ";     }     return 0; } 
Java
// Java program to print top view of binary tree // optimally using bfs import java.util.*;  class Node {     int data;     Node left, right;        Node(int val) {         data = val;         left = right = null;     } }  class GfG {        // Function to return a list of nodes visible from the     // top view from left to right in Binary Tree.     static ArrayList<Integer> topView(Node root) {                // Base case: if the tree is empty, return an empty         // list         if (root == null) {             return new ArrayList<>();         }                // Queue to perform level order traversal.         // Each element in the queue is a pair of (Node,         // horizontal distance)         Queue<Pair> queue = new LinkedList<>();         queue.add(new Pair(root, 0));                // HashMap to store the first node at each         // horizontal distance         HashMap<Integer, Integer> map = new HashMap<>();                // Variables to track the minimum and maximum         // horizontal distances         int minHD = 0;         int maxHD = 0;         while (!queue.isEmpty()) {             Pair current = queue.poll();             Node currentNode = current.node;             int hd = current.dist;                        // Update min and max horizontal distances             if (hd < minHD) {                 minHD = hd;             }             if (hd > maxHD) {                 maxHD = hd;             }                        // If a horizontal distance is encountered for             // the first time, add it to the map             if (!map.containsKey(hd)) {                 map.put(hd, currentNode.data);             }                        // Enqueue the left child with horizontal             // distance hd - 1             if (currentNode.left != null) {                 queue.add(                     new Pair(currentNode.left, hd - 1));             }                        // Enqueue the right child with horizontal             // distance hd + 1             if (currentNode.right != null) {                 queue.add(                     new Pair(currentNode.right, hd + 1));             }         }                // Prepare the result list by traversing from minHD         // to maxHD         ArrayList<Integer> topViewList = new ArrayList<>();         for (int hd = minHD; hd <= maxHD; hd++) {             if (map.containsKey(hd)) {                 topViewList.add(map.get(hd));             }         }         return topViewList;     }      // Helper class to store a node along with its     // horizontal distance     static class Pair {         Node node;         int dist;         Pair(Node node, int dist) {             this.node = node;             this.dist = dist;         }     }        public static void main(String[] args) {                // Create a sample binary tree         //     1         //    / \         //   2   3         //  / \ / \         // 4  5 6  7          Node root = new Node(1);         root.left = new Node(2);         root.right = new Node(3);         root.left.left = new Node(4);         root.left.right = new Node(5);         root.right.left = new Node(6);         root.right.right = new Node(7);          ArrayList<Integer> result = topView(root);         for (int i : result) {             System.out.print(i + " ");         }     } } 
Python
# Python program to print top view of binary tree # optimally using bfs  from queue import Queue  class Node:     def __init__(self, data):         self.data = data         self.left = None         self.right = None  # Function to return a list of nodes visible # from the top view from left to right in Binary Tree.  def topView(root):        # base case     if not root:         return []      temp = None          # creating empty queue for level order traversal.     q = Queue()          # creating a dictionary to store nodes at a     # particular horizontal distance.     mp = {}      mn = float('inf')     q.put((root, 0))     while not q.empty():         temp, d = q.get()         mn = min(mn, d)                  # storing temp.data in dictionary.         if d not in mp:             mp[d] = temp.data                      # if left child of temp exists, pushing it in         # the queue with the horizontal distance.         if temp.left:             q.put((temp.left, d - 1))                      # if right child of temp exists, pushing it in         # the queue with the horizontal distance.         if temp.right:             q.put((temp.right, d + 1))                  # Initialize result array with size equal to dictionary size     ans = [0] * len(mp)          # Fill result array based on horizontal distances     for d, value in mp.items():         ans[d - mn] = value     return ans   if __name__ == "__main__":        # Create a sample binary tree     #     1     #    / \     #   2   3     #  / \ / \     # 4  5 6  7      root = Node(1)     root.left = Node(2)     root.right = Node(3)     root.left.left = Node(4)     root.left.right = Node(5)     root.right.left = Node(6)     root.right.right = Node(7)      result = topView(root)     print(" ".join(map(str, result))) 
C#
// C# program to print top view of binary tree // optimally using bfs using System; using System.Collections.Generic; using System.Linq;  class Node {     public int data;     public Node left, right;      public Node(int val) {         data = val;         left = right = null;     } }  class GfG {        // Function to return a list of nodes visible     // from the top view from left to right in Binary Tree.     public static List<int> TopView(Node root) {          // base case         if (root == null)             return new List<int>();          Node temp = null;                // creating empty queue for level order traversal.         Queue<(Node, int)> q = new Queue<(Node, int)>();                // creating a dictionary to store nodes at a         // particular horizontal distance.         Dictionary<int, int> mp             = new Dictionary<int, int>();          int mn = int.MaxValue;         q.Enqueue((root, 0));          while (q.Count > 0) {             var front = q.Dequeue();             temp = front.Item1;             int d = front.Item2;             mn = Math.Min(mn, d);              // storing temp.data in dictionary.             if (!mp.ContainsKey(d)) {                 mp[d] = temp.data;             }              // if left child of temp exists, pushing it in             // the queue with the horizontal distance.             if (temp.left != null) {                 q.Enqueue((temp.left, d - 1));             }                        // if right child of temp exists, pushing it in             // the queue with the horizontal distance.             if (temp.right != null) {                 q.Enqueue((temp.right, d + 1));             }         }          // Initialize result array with size equal to         // dictionary size         List<int> ans = new List<int>(new int[mp.Count]);                // Fill result array based on horizontal distances         foreach(var entry in mp) {             ans[entry.Key - mn] = entry.Value;         }          return ans;     }      static void Main(string[] args) {          // Create a sample binary tree         //     1         //    / \         //   2   3         //  / \ / \         // 4  5 6  7          Node root = new Node(1);         root.left = new Node(2);         root.right = new Node(3);         root.left.left = new Node(4);         root.left.right = new Node(5);         root.right.left = new Node(6);         root.right.right = new Node(7);          List<int> result = TopView(root);         Console.WriteLine(string.Join(" ", result));     } } 
JavaScript
// JavaScript program to print top view of binary tree // optimally using bfs  class Node {     constructor(data) {         this.data = data;         this.left = null;         this.right = null;     } }  function topView(root) {      // Base case     if (root === null) {         return [];     }      // Queue for level order traversal     let queue = [];          // Map to store nodes at a particular horizontal     // distance     let map = new Map();      // Track the minimum horizontal distance     let minDistance = Number.MAX_VALUE;      // Start with the root at horizontal distance 0     queue.push([ root, 0 ]);      while (queue.length > 0) {         let [temp, d] = queue.shift();          // Update the minimum horizontal distance         minDistance = Math.min(minDistance, d);          // If the horizontal distance is not yet in the map,         // add it         if (!map.has(d)) {             map.set(d, temp.data);         }          // Add left child with horizontal distance d - 1         if (temp.left) {             queue.push([ temp.left, d - 1 ]);         }          // Add right child with horizontal distance d + 1         if (temp.right) {             queue.push([ temp.right, d + 1 ]);         }     }      // Create the result array with size equal to map size     let ans = new Array(map.size);      // Populate the result array using the map     for (let [key, value] of map) {         ans[key - minDistance] = value;     }      return ans; }  // Driver code // Create a sample binary tree //     1 //    / \ //   2   3 //  / \ / \ // 4  5 6  7 let root = new Node(1); root.left = new Node(2); root.right = new Node(3); root.left.left = new Node(4); root.left.right = new Node(5); root.right.left = new Node(6); root.right.right = new Node(7);  let result = topView(root); console.log(result.join(" ")); 

Output
4 2 1 3 7 


Next Article
Print all internal nodes of a Binary tree
author
kartik
Improve
Article Tags :
  • DSA
  • Hash
  • Queue
  • Tree
  • Amazon
  • BFS
  • Paytm
  • Samsung
  • tree-view
  • Walmart
Practice Tags :
  • Amazon
  • Paytm
  • Samsung
  • Walmart
  • BFS
  • Hash
  • Queue
  • Tree

Similar Reads

  • Sum of nodes in top view of binary tree
    Top view of a binary tree is the set of nodes visible when the tree is viewed from the top. Given a binary tree, the task is to print the sum of nodes in top view.Examples: Input: 1 / \ 2 3 / \ \ 4 5 6 Output: 16 Input: 1 / \ 2 3 \ 4 \ 5 \ 6 Output: 12 Approach: The idea is to put nodes of same hori
    13 min read
  • Print Right View of a Binary Tree
    Given a Binary Tree, the task is to print the Right view of it. The right view of a Binary Tree is a set of rightmost nodes for every level. Examples: Example 1: The Green colored nodes (1, 3, 5) represents the Right view in the below Binary tree. Example 2: The Green colored nodes (1, 3, 4, 5) repr
    15+ min read
  • Sum of nodes in bottom view of Binary Tree
    Given a binary tree, the task is to return the sum of nodes in the bottom view of the given Binary Tree. The bottom view of a binary tree is the set of nodes visible when the tree is viewed from the bottom. Note: If there are multiple bottom-most nodes for a horizontal distance from the root, then t
    15+ min read
  • Print Bottom-Right View of a Binary Tree
    Given a Binary Tree, print Bottom-Right view of it. The Bottom Right view of a Binary Tree is a set of nodes visible when the tree is visited from Bottom Right side, return the values of the nodes ordered from right to left. In the bottom-right view, on viewing the tree at an angle of 45 degrees fro
    11 min read
  • Print all internal nodes of a Binary tree
    Given a Binary tree, the task is to print all the internal nodes in a tree. An internal node is a node which carries at least one child or in other words, an internal node is not a leaf node. Here we intend to print all such internal nodes in level order. Consider the following Binary Tree: Input: O
    7 min read
  • Sum of nodes in the right view of the given binary tree
    Given a binary tree, the task is to find the sum of the nodes which are visible in the right view. The right view of a binary tree is the set of nodes visible when the tree is viewed from the right.Examples: Input: 1 / \ 2 3 / \ \ 4 5 6Output: 101 + 3 + 6 = 10Input: 1 / \ 2 3 \ 4 \ 5 \ 6Output: 19Ap
    15+ min read
  • Print Levels of all nodes in a Binary Tree
    Given a Binary Tree and a key, write a function that prints levels of all keys in given binary tree. For example, consider the following tree. If the input key is 3, then your function should return 1. If the input key is 4, then your function should return 3. And for key which is not present in key
    7 min read
  • Sum of nodes in the left view of the given binary tree
    Given a binary tree, the task is to find the sum of the nodes which are visible in the left view. The left view of a binary tree is the set of nodes visible when the tree is viewed from the left.Examples: Example 1 : The Green colored nodes represents the left view in the below Binary tree. The Left
    13 min read
  • Print the nodes of Binary Tree having a grandchild
    Given a Binary Tree, the task is to print the nodes that have grandchildren. Examples: Input: Output: 20 8 Explanation: 20 and 8 are the grandparents of 4, 12 and 10, 14. Input: Output: 1 Explanation: 1 is the grandparent of 4, 5. Approach: The idea uses Recursion. Below are the steps: Traverse the
    8 min read
  • Left View of a Binary Tree
    Given a Binary Tree, the task is to print the left view of the Binary Tree. The left view of a Binary Tree is a set of leftmost nodes for every level. Examples: Input: root[] = [1, 2, 3, 4, 5, N, N]Output: [1, 2, 4]Explanation: From the left side of the tree, only the nodes 1, 2, and 4 are visible.
    11 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences