Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • DSA
  • Interview Problems on Tree
  • Practice Tree
  • MCQs on Tree
  • Tutorial on Tree
  • Types of Trees
  • Basic operations
  • Tree Traversal
  • Binary Tree
  • Complete Binary Tree
  • Ternary Tree
  • Binary Search Tree
  • Red-Black Tree
  • AVL Tree
  • Full Binary Tree
  • B-Tree
  • Advantages & Disadvantages
Open In App
Next Article:
Print all nodes at distance K from given node: Iterative Approach
Next article icon

Print all nodes at distance k from a given node

Last Updated : 05 Oct, 2024
Comments
Improve
Suggest changes
Like Article
Like
Report
Try it on GfG Practice
redirect icon

Given a binary tree, a target node in the binary tree, and an integer value k, the task is to find all the nodes at a distance k from the given target node. No parent pointers are available.

Note:

  • You have to return the list in sorted order.
  • The tree will not contain duplicate values.

Examples:

Input: target = 2, k = 2

Iterative-Postorder-Traversal

Output: 3
Explanation: Nodes at a distance 2 from the given target node 2 is 3.

Input: target = 3, k = 1

Iterative-Postorder-Traversal-3

Output: 1 6 7
Explanation: Nodes at a distance 1 from the given target node 3 are 1 , 6 & 7.

Table of Content

  • [Expected Approach – 1] Using Recursion – O(nlogn) Time and O(h) Space
  • [Expected Approach – 2] Using Depth First Search with parent pointers – O(nlogn) Time and O(n) Space

[Expected Approach – 1] Using Recursion – O(nlogn) Time and O(h) Space

The idea is to traverse the binary tree using recursion and find the target node. Find all the nodes in the left and right subtree of target node that are at a distance k. Also for all the nodes in the path of target node, find all the nodes in the opposite subtree that are at the distance of (k – distance of target node).

Below is the implementation of the above approach:

C++
// C++ program to find nodes // at distance k from target. #include <bits/stdc++.h> using namespace std;  class Node {   public:     int data;     Node *left, *right;     Node(int x) {         data = x;         left = nullptr;         right = nullptr;     } };  // Function which finds the nodes at a given // distance from root node void findNodes(Node *root, int dis, vector<int> &ans) {      // base case     if (root == nullptr)         return;      if (dis == 0) {         ans.push_back(root->data);         return;     }      findNodes(root->left, dis - 1, ans);     findNodes(root->right, dis - 1, ans); }  // Function which returns the distance of a node // target node. Returns -1 if target is not found. int kDistanceRecur(Node *root, int target, int k, vector<int> &ans) {      // base case     if (root == nullptr)         return -1;      // If current node is target     if (root->data == target) {          // Find nodes at distance k from         // target node in subtree.         findNodes(root, k, ans);          return 1;     }      int left = kDistanceRecur(root->left, target, k, ans);      // If target node is found in left     // subtree, find all nodes at distance     // k-left in right subtree.     if (left != -1) {         if (k - left == 0)             ans.push_back(root->data);         else             findNodes(root->right, k - left - 1, ans);         return left + 1;     }      int right = kDistanceRecur(root->right, target, k, ans);      // If target node is found in right     // subtree, find all nodes at distance     // k-right in left subtree.     if (right != -1) {         if (k - right == 0)             ans.push_back(root->data);         else             findNodes(root->left, k - right - 1, ans);         return right + 1;     }      // If target node is not found     // return -1     return -1; }  vector<int> KDistanceNodes(Node *root, int target, int k) {     vector<int> ans;      kDistanceRecur(root, target, k, ans);      // sort the result     sort(ans.begin(), ans.end());      return ans; }  void printList(vector<int> v) {     int n = v.size();     for (int i = 0; i < n; i++) {         cout << v[i] << " ";     }     cout << endl; }  int main() {      // Create a hard coded tree.     //         20     //       /    \     //      7      24     //    /   \     //   4     3     //        /     //       1     Node *root = new Node(20);     root->left = new Node(7);     root->right = new Node(24);     root->left->left = new Node(4);     root->left->right = new Node(3);     root->left->right->left = new Node(1);      int target = 7, k = 2;     vector<int> ans = KDistanceNodes(root, target, k);      printList(ans);     return 0; } 
Java
// Java program to find nodes // at distance k from target. import java.util.ArrayList; import java.util.Collections;  class Node {     int data;     Node left, right;      Node(int x) {         data = x;         left = null;         right = null;     } }  class GfG {      // Function which finds the nodes at a given     // distance from root node     static void findNodes(Node root, int dis,                           ArrayList<Integer> ans) {          // base case         if (root == null)             return;          if (dis == 0) {             ans.add(root.data);             return;         }          findNodes(root.left, dis - 1, ans);         findNodes(root.right, dis - 1, ans);     }      // Function which returns the distance of a node     // target node. Returns -1 if target is not found.     static int kDistanceRecur(Node root, int target, int k,                               ArrayList<Integer> ans) {          // base case         if (root == null)             return -1;          // If current node is target         if (root.data == target) {              // Find nodes at distance k from             // target node in subtree.             findNodes(root, k, ans);              return 1;         }          int left             = kDistanceRecur(root.left, target, k, ans);          // If target node is found in left         // subtree, find all nodes at distance         // k-left in right subtree.         if (left != -1) {             if (k - left == 0)                 ans.add(root.data);             else                 findNodes(root.right, k - left - 1, ans);             return left + 1;         }          int right             = kDistanceRecur(root.right, target, k, ans);          // If target node is found in right         // subtree, find all nodes at distance         // k-right in left subtree.         if (right != -1) {             if (k - right == 0)                 ans.add(root.data);             else                 findNodes(root.left, k - right - 1, ans);             return right + 1;         }          // If target node is not found         // return -1         return -1;     }      static ArrayList<Integer>     KDistanceNodes(Node root, int target, int k) {         ArrayList<Integer> ans = new ArrayList<>();          kDistanceRecur(root, target, k, ans);          // sort the result         Collections.sort(ans);          return ans;     }      static void printList(ArrayList<Integer> v) {         for (int i : v) {             System.out.print(i + " ");         }         System.out.println();     }      public static void main(String[] args) {          // Create a hard coded tree.         //         20         //       /    \         //      7      24         //    /   \         //   4     3         //        /         //       1         Node root = new Node(20);         root.left = new Node(7);         root.right = new Node(24);         root.left.left = new Node(4);         root.left.right = new Node(3);         root.left.right.left = new Node(1);          int target = 7, k = 2;         ArrayList<Integer> ans             = KDistanceNodes(root, target, k);          printList(ans);     } } 
Python
# Python program to find nodes # at distance k from target.  class Node:     def __init__(self, x):         self.data = x         self.left = None         self.right = None  # Function which finds the nodes at a given # distance from root node def findNodes(root, dis, ans):      # base case     if root is None:         return      if dis == 0:         ans.append(root.data)         return      findNodes(root.left, dis - 1, ans)     findNodes(root.right, dis - 1, ans)  # Function which returns the distance of a node # target node. Returns -1 if target is not found. def kDistanceRecur(root, target, k, ans):      # base case     if root is None:         return -1      # If current node is target     if root.data == target:          # Find nodes at distance k from         # target node in subtree.         findNodes(root, k, ans)          return 1      left = kDistanceRecur(root.left, target, k, ans)      # If target node is found in left     # subtree, find all nodes at distance     # k-left in right subtree.     if left != -1:         if k - left == 0:             ans.append(root.data)         else:             findNodes(root.right, k - left - 1, ans)         return left + 1      right = kDistanceRecur(root.right, target, k, ans)      # If target node is found in right     # subtree, find all nodes at distance     # k-right in left subtree.     if right != -1:         if k - right == 0:             ans.append(root.data)         else:             findNodes(root.left, k - right - 1, ans)         return right + 1      # If target node is not found     # return -1     return -1  def KDistanceNodes(root, target, k):     ans = []      kDistanceRecur(root, target, k, ans)      # sort the result     ans.sort()      return ans   def printList(v):     print(" ".join(map(str, v)))   if __name__ == "__main__":      # Create a hard coded tree.     #         20     #       /    \     #      7      24     #    /   \     #   4     3     #        /     #       1     root = Node(20)     root.left = Node(7)     root.right = Node(24)     root.left.left = Node(4)     root.left.right = Node(3)     root.left.right.left = Node(1)      target = 7     k = 2     ans = KDistanceNodes(root, target, k)      printList(ans) 
C#
// C# program to find nodes // at distance k from target. using System; using System.Collections.Generic;  class Node {     public int data;     public Node left, right;      public Node(int x) {         data = x;         left = null;         right = null;     } }  class GfG {      // Function which finds the nodes at a given     // distance from root node     static void findNodes(Node root, int dis, List<int> ans) {          // base case         if (root == null)             return;          if (dis == 0) {             ans.Add(root.data);             return;         }          findNodes(root.left, dis - 1, ans);         findNodes(root.right, dis - 1, ans);     }      // Function which returns the distance of a node     // target node. Returns -1 if target is not found.     static int kDistanceRecur(Node root, int target, int k,                               List<int> ans) {          // base case         if (root == null)             return -1;          // If current node is target         if (root.data == target) {              // Find nodes at distance k from             // target node in subtree.             findNodes(root, k, ans);              return 1;         }          int left             = kDistanceRecur(root.left, target, k, ans);          // If target node is found in left         // subtree, find all nodes at distance         // k-left in right subtree.         if (left != -1) {             if (k - left == 0)                 ans.Add(root.data);             else                 findNodes(root.right, k - left - 1, ans);             return left + 1;         }          int right             = kDistanceRecur(root.right, target, k, ans);          // If target node is found in right         // subtree, find all nodes at distance         // k-right in left subtree.         if (right != -1) {             if (k - right == 0)                 ans.Add(root.data);             else                 findNodes(root.left, k - right - 1, ans);             return right + 1;         }          // If target node is not found         // return -1         return -1;     }      static List<int> KDistanceNodes(Node root, int target,                                     int k) {         List<int> ans = new List<int>();          kDistanceRecur(root, target, k, ans);          // sort the result         ans.Sort();          return ans;     }      static void printList(List<int> v) {         foreach(int i in v) { Console.Write(i + " "); }         Console.WriteLine();     }      static void Main() {          // Create a hard coded tree.         //         20         //       /    \         //      7      24         //    /   \         //   4     3         //        /         //       1         Node root = new Node(20);         root.left = new Node(7);         root.right = new Node(24);         root.left.left = new Node(4);         root.left.right = new Node(3);         root.left.right.left = new Node(1);          int target = 7, k = 2;         List<int> ans = KDistanceNodes(root, target, k);          printList(ans);     } } 
JavaScript
// JavaScript program to find nodes // at distance k from target.  class Node {     constructor(x) {         this.key = x;         this.left = null;         this.right = null;     } }  // Function which finds the nodes at a given // distance from root node function findNodes(root, dis, ans) {      // base case     if (root === null)         return;      if (dis === 0) {         ans.push(root.key);         return;     }      findNodes(root.left, dis - 1, ans);     findNodes(root.right, dis - 1, ans); }  // Function which returns the distance of a node // target node. Returns -1 if target is not found. function kDistanceRecur(root, target, k, ans) {      // base case     if (root === null)         return -1;      // If current node is target     if (root.key === target) {          // Find nodes at distance k from         // target node in subtree.         findNodes(root, k, ans);          return 1;     }      let left = kDistanceRecur(root.left, target, k, ans);      // If target node is found in left     // subtree, find all nodes at distance     // k-left in right subtree.     if (left !== -1) {         if (k - left === 0)             ans.push(root.key);         else             findNodes(root.right, k - left - 1, ans);         return left + 1;     }      let right = kDistanceRecur(root.right, target, k, ans);      // If target node is found in right     // subtree, find all nodes at distance     // k-right in left subtree.     if (right !== -1) {         if (k - right === 0)             ans.push(root.key);         else             findNodes(root.left, k - right - 1, ans);         return right + 1;     }      // If target node is not found     // return -1     return -1; }  function KDistanceNodes(root, target, k) {     let ans = [];      kDistanceRecur(root, target, k, ans);      // sort the result     ans.sort((a, b) => a - b);      return ans; }  function printList(v) { console.log(v.join(" ")); }  // Create a hard coded tree. //         20 //       /    \ //      7      24 //    /   \ //   4     3 //        / //       1 let root = new Node(20); root.left = new Node(7); root.right = new Node(24); root.left.left = new Node(4); root.left.right = new Node(3); root.left.right.left = new Node(1);  let target = 7, k = 2; let ans = KDistanceNodes(root, target, k);  printList(ans); 

Output
1 24  

Time Complexity: O(nlogn), for sorting the result.
Auxiliary Space: O(h), where h is the height of the tree.

[Expected Approach – 2] Using DFS with Parent Pointers – O(nlogn) Time and O(n) Space:

The idea is to recursively find the target node and map each node to its parent node. Then, starting from the target node, apply depth first search (DFS) to find all the nodes at distance k from the target node.

Below is the implementation of the above approach:

C++
// C++ program to find nodes // at distance k from target. #include <bits/stdc++.h> using namespace std;  class Node {   public:     int data;     Node *left, *right;     Node(int x) {         data = x;         left = nullptr;         right = nullptr;     } };  // Function which maps the nodes to its parent nodes // and returns the target node. Node *findTarNode(Node *root, int target, unordered_map<Node*, Node*> &parent) {      Node *left = nullptr, *right = nullptr;          // map the left child to root node      // and search for target node in      // left subtree.     if (root->left != nullptr) {         parent[root->left] = root;         left = findTarNode(root->left, target, parent);     }          // map the right child to root node and search      // for target node in right subtree.     if (root->right != nullptr) {         parent[root->right] = root;         right = findTarNode(root->right, target, parent);     }          // If root node is target, then     // return root node.     if (root->data == target) {         return root;     }          // If target node in found in left     // subtree, then return left.     else if (left != nullptr) {         return left;     }          // return the result from     // right subtree.     return right; }  // depth first function to find nodes k  // distance away. void dfs(Node *root, Node *prev, int k,           unordered_map<Node *, Node *> &parent, vector<int> &ans) {      // base case     if (root == nullptr)         return;          // If current node is kth      // distance away.     if (k == 0) {         ans.push_back(root->data);         return;     }      if (root->left != prev)         dfs(root->left, root, k - 1, parent, ans);      if (root->right != prev)         dfs(root->right, root, k - 1, parent, ans);      if (parent[root] != prev)         dfs(parent[root], root, k - 1, parent, ans); }  vector<int> KDistanceNodes(Node *root, int target, int k) {     vector<int> ans;      if (root == nullptr)         return ans;          // find the target nodes and map the nodes     // to their parent nodes.     unordered_map<Node *, Node *> parent;     Node *tar = findTarNode(root, target, parent);      dfs(tar, nullptr, k, parent, ans);      // sort the result     sort(ans.begin(), ans.end());      return ans; }  void printList(vector<int> v) {     int n = v.size();     for (int i = 0; i < n; i++) {         cout << v[i] << " ";     }     cout << endl; }  int main() {      // Create a hard coded tree.     //         20     //       /    \     //      7      24     //    /   \     //   4     3     //        /     //       1     Node *root = new Node(20);     root->left = new Node(7);     root->right = new Node(24);     root->left->left = new Node(4);     root->left->right = new Node(3);     root->left->right->left = new Node(1);      int target = 7, k = 2;     vector<int> ans = KDistanceNodes(root, target, k);      printList(ans);     return 0; } 
Java
// Java program to find nodes // at distance k from target. import java.util.*;  class Node {     int data;     Node left, right;      Node(int x) {         data = x;         left = null;         right = null;     } }  class GfG {      // Function which maps the nodes to its parent nodes     // and returns the target node.     static Node findTarNode(Node root, int target,                             Map<Node, Node> parent) {          Node left = null, right = null;                  // map the left child to root node          // and search for target node in          // left subtree.         if (root.left != null) {             parent.put(root.left, root);             left = findTarNode(root.left, target, parent);         }                  // map the right child to root node and search          // for target node in right subtree.         if (root.right != null) {             parent.put(root.right, root);             right = findTarNode(root.right, target, parent);         }                  // If root node is target, then         // return root node.         if (root.data == target) {             return root;         }                  // If target node in found in left         // subtree, then return left.         else if (left != null) {             return left;         }                  // return the result from         // right subtree.         return right;     }          // depth first function to find nodes k      // distance away.     static void dfs(Node root, Node prev, int k,                     Map<Node, Node> parent,                     ArrayList<Integer> ans) {          // base case         if (root == null)             return;                  // If current node is kth          // distance away.         if (k == 0) {             ans.add(root.data);             return;         }          if (root.left != prev)             dfs(root.left, root, k - 1, parent, ans);          if (root.right != prev)             dfs(root.right, root, k - 1, parent, ans);          if (parent.get(root) != prev)             dfs(parent.get(root), root, k - 1, parent, ans);     }        static ArrayList<Integer> KDistanceNodes(Node root, int target, int k) {         ArrayList<Integer> ans = new ArrayList<>();          if (root == null)             return ans;                  // find the target nodes and map the nodes         // to their parent nodes.         Map<Node, Node> parent = new HashMap<>();         Node tar = findTarNode(root, target, parent);          dfs(tar, null, k, parent, ans);          // sort the result         Collections.sort(ans);          return ans;     }      static void printList(ArrayList<Integer> v) {         for (int i : v) {             System.out.print(i + " ");         }         System.out.println();     }      public static void main(String[] args) {          // Create a hard coded tree.         //         20         //       /    \         //      7      24         //    /   \         //   4     3         //        /         //       1         Node root = new Node(20);         root.left = new Node(7);         root.right = new Node(24);         root.left.left = new Node(4);         root.left.right = new Node(3);         root.left.right.left = new Node(1);          int target = 7, k = 2;         ArrayList<Integer> ans             = KDistanceNodes(root, target, k);          printList(ans);     } } 
Python
# Python program to find nodes # at distance k from target.  class Node:     def __init__(self, x):         self.data = x         self.left = None         self.right = None  # Function which maps the nodes to its parent nodes # and returns the target node. def findTarNode(root, target, parent):      left = right = None          # map the left child to root node      # and search for target node in      # left subtree.     if root.left is not None:         parent[root.left] = root         left = findTarNode(root.left, target, parent)          # map the right child to root node and search      # for target node in right subtree.     if root.right is not None:         parent[root.right] = root         right = findTarNode(root.right, target, parent)          # If root node is target, then     # return root node.     if root.data == target:         return root              # If target node in found in left     # subtree, then return left.     elif left:         return left          # return the result from     # right subtree.     return right  # depth first function to find nodes k  # distance away. def dfs(root, prev, k, parent, ans):      # base case     if not root:         return          # If current node is kth      # distance away.     if k == 0:         ans.append(root.data)         return      if root.left != prev:         dfs(root.left, root, k - 1, parent, ans)      if root.right != prev:         dfs(root.right, root, k - 1, parent, ans)      if parent.get(root) != prev:         dfs(parent[root], root, k - 1, parent, ans)  def KDistanceNodes(root, target, k):     ans = []      if not root:         return ans          # find the target nodes and map the nodes     # to their parent nodes.     parent = {}     parent[root] = None     tar = findTarNode(root, target, parent)      dfs(tar, None, k, parent, ans)      # sort the result     ans.sort()      return ans   def printList(v):     print(" ".join(map(str, v)))   if __name__ == "__main__":        # Create a hard coded tree.     #         20     #       /    \     #      7      24     #    /   \     #   4     3     #        /     #       1     root = Node(20)     root.left = Node(7)     root.right = Node(24)     root.left.left = Node(4)     root.left.right = Node(3)     root.left.right.left = Node(1)      target = 7     k = 2     ans = KDistanceNodes(root, target, k)      printList(ans) 
C#
// C# program to find nodes // at distance k from target. using System; using System.Collections.Generic;  class Node {     public int data;     public Node left, right;      public Node(int x) {         data = x;         left = null;         right = null;     } }  class GfG {      // Function which maps the nodes to its parent nodes     // and returns the target node.     static Node findTarNode(Node root, int target,                              Dictionary<Node, Node> parent) {          Node left = null, right = null;                  // map the left child to root node          // and search for target node in          // left subtree.         if (root.left != null) {             parent[root.left] = root;             left = findTarNode(root.left, target, parent);         }                  // map the right child to root node and search          // for target node in right subtree.         if (root.right != null) {             parent[root.right] = root;             right = findTarNode(root.right, target, parent);         }                  // If root node is target, then         // return root node.         if (root.data == target) {             return root;         }                  // If target node in found in left         // subtree, then return left.         else if (left != null) {             return left;         }                  // return the result from         // right subtree.         return right;     }      static void dfs(Node root, Node prev, int k,                     Dictionary<Node, Node> parent,                     List<int> ans) {          // base case         if (root == null)             return;                  // If current node is kth          // distance away.         if (k == 0) {             ans.Add(root.data);             return;         }          if (root.left != prev)             dfs(root.left, root, k - 1, parent, ans);          if (root.right != prev)             dfs(root.right, root, k - 1, parent, ans);          if (parent[root] != prev)             dfs(parent[root], root, k - 1, parent, ans);     }      static List<int> KDistanceNodes(Node root, int target, int k) {         List<int> ans = new List<int>();          if (root == null)             return ans;          Dictionary<Node, Node> parent             = new Dictionary<Node, Node>();         parent[root] = null;         Node tar = findTarNode(root, target, parent);          dfs(tar, null, k, parent, ans);          // sort the result         ans.Sort();          return ans;     }      static void printList(List<int> v) {         foreach(int i in v) { Console.Write(i + " "); }         Console.WriteLine();     }      static void Main(string[] args) {          // Create a hard coded tree.         //         20         //       /    \         //      7      24         //    /   \         //   4     3         //        /         //       1         Node root = new Node(20);         root.left = new Node(7);         root.right = new Node(24);         root.left.left = new Node(4);         root.left.right = new Node(3);         root.left.right.left = new Node(1);          int target = 7, k = 2;         List<int> ans = KDistanceNodes(root, target, k);          printList(ans);     } } 
JavaScript
// JavaScript program to find nodes // at distance k from target.  class Node {     constructor(x) {         this.key = x;         this.left = null;         this.right = null;     } }  // Function which maps the nodes to its parent nodes // and returns the target node. function findTarNode(root, target, parent) {      let left = null, right = null;          // map the left child to root node      // and search for target node in      // left subtree.     if (root.left !== null) {         parent.set(root.left, root);         left = findTarNode(root.left, target, parent);     }          // map the right child to root node and search      // for target node in right subtree.     if (root.right !== null) {         parent.set(root.right, root);         right = findTarNode(root.right, target, parent);     }          // If root node is target, then     // return root node.     if (root.key === target) {         return root;     }          // If target node in found in left     // subtree, then return left.     else if (left !== null) {         return left;     }          // return the result from     // right subtree.     return right; }  // depth first function to find nodes k  // distance away. function dfs(root, prev, k, parent, ans) {      // base case     if (root === null)         return;          // If current node is kth      // distance away.     if (k === 0) {         ans.push(root.key);         return;     }      if (root.left !== prev)         dfs(root.left, root, k - 1, parent, ans);      if (root.right !== prev)         dfs(root.right, root, k - 1, parent, ans);      if (parent.get(root) !== prev)         dfs(parent.get(root), root, k - 1, parent, ans); }  function KDistanceNodes(root, target, k) {     let ans = [];      if (root === null)         return ans;          // find the target nodes and map the nodes     // to their parent nodes.     let parent = new Map();     parent.set(root, null);     let tar = findTarNode(root, target, parent);      dfs(tar, null, k, parent, ans);      // sort the result     ans.sort((a, b) => a - b);      return ans; }  function printList(v) { console.log(v.join(" ")); }  // Create a hard coded tree. //         20 //       /    \ //      7      24 //    /   \ //   4     3 //        / //       1 let root = new Node(20); root.left = new Node(7); root.right = new Node(24); root.left.left = new Node(4); root.left.right = new Node(3); root.left.right.left = new Node(1);  let target = 7, k = 2; let ans = KDistanceNodes(root, target, k);  printList(ans); 

Output
1 24  

Time Complexity: O(nlogn), for sorting the result.
Space Complexity: O(h), where h is the height of the tree.

Related article:

  • Print all nodes at distance K from given node: Iterative Approach


Next Article
Print all nodes at distance K from given node: Iterative Approach

P

Prasant Kumar
Improve
Article Tags :
  • DSA
  • Tree
  • Amazon
  • Citicorp
  • Flipkart
  • Goldman Sachs
  • Hike
  • Ola Cabs
  • Samsung
  • Walmart
Practice Tags :
  • Amazon
  • Citicorp
  • Flipkart
  • Goldman Sachs
  • Hike
  • Ola Cabs
  • Samsung
  • Walmart
  • Tree

Similar Reads

  • Print all nodes at distance K from given node: Iterative Approach
    Given a binary tree, a target node in the binary tree, and an integer value k, the task is to find all the nodes at a distance k from the given target node. No parent pointers are available. Note: You have to return the list in sorted order.The tree will not contain duplicate values.Examples: Input:
    12 min read
  • Count nodes within K-distance from all nodes in a set
    Given an undirected tree with some marked nodes and a positive number K. We need to print the count of all such nodes which have distance from all marked nodes less than or equal to K that means every node whose distance from all marked nodes is less than or equal to K, should be counted in the resu
    14 min read
  • Print all nodes that are at distance k from a leaf node
    Given a Binary Tree and a positive integer K, print all nodes that are distance K from a leaf node. Here K distance from a leaf means K levels higher than a leaf node. For example, if K is more than the height of the Binary Tree, then nothing should be printed. Examples: Recommended PracticeNode at
    15+ min read
  • Sum of distances of all nodes from a given node
    Given a Binary Tree and an integer target, denoting the value of a node, the task is to find the sum of distances of all nodes from the given node. Examples: Input: target = 3 Output: 19Explanation: Distance of Nodes 1, 6, 7 from the Node 3 = 1Distance of the Node 2 from the Node 3 = 2Distance of th
    15+ min read
  • Print nodes at k distance from root | Iterative
    Given a binary tree, and an integer k. The task is to return all the nodes which are at kdistance from the root.  Example : Input: Output: 2 9 13Explanation: In the above tree 2, 9 & 13 are at distance 2 from root.  Input: Output: 5 11Explanation: In the above tree 5 & 11 are at distance 1 f
    15+ min read
  • Print nodes at k distance from root
    Given a binary tree, and an integer k. The task is to return all the nodes which are at k distance from the root. Examples: Input: Output: 2 9 13Explanation: In the above tree 2, 9 & 13 are at distance 2 from root. Input: Output: 5 11Explanation: In the above tree 5 & 11 are at distance 1 fr
    8 min read
  • Sum of all nodes with smaller values at a distance K from a given node in a BST
    Given a Binary Search Tree, a target node in the BST, and an integer value K, the task is to find the sum of all nodes that are at a distance K from the target node whose value is less than the target node. Examples: Input: target = 7, K = 2 Output: 11Explanation:The nodes at a distance K(= 2) from
    15+ min read
  • Count of nodes at a distance K for every node
    Given a tree of N vertices and a positive integer K. The task is to find the count of nodes at a distance K for every node. Examples: Input: N = 5, K = 2, edges[][] = {{1, 2}, {1, 3}, {2, 4}, {2, 5}}Output: 2 1 1 2 2Explanation: From node 1, there are 2 nodes that are at a distance of 2: node 4 and
    6 min read
  • Find distance from root to given node in a binary tree
    Given the root of a binary tree and a key x in it, find the distance of the given key from the root. Dis­tance means the num­ber of edges between two nodes. Examples: Input: x = 45 Output: 3 Explanation: There are three edges on path from root to 45.For more understanding of question, in above tree
    11 min read
  • Print all neighbour nodes within distance K
    Given a graph of N nodes, E edges, a node X and a distance K. The task is to print all the nodes within the distance K from X. Input: Output: 4 5 2 7 3Neighbour nodes within distance 2 of node 4 are: 4 5 2 7 3 Approach: To print all the nodes that are at distance K or less than K. We can do it by ap
    8 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences