Solovay-Strassen method of Primality Test
Last Updated : 11 Feb, 2025
We have already been introduced to primality testing in the previous articles in this series.
The Solovay–Strassen test is a probabilistic algorithm used to check if a number is prime or composite (not prime). It is not 100% accurate but gives a high probability of correctness when run multiple times. Before jumping into the test, let's break down some key concepts:
To perform the test, we need to understand two important mathematical symbols:
- Legendre Symbol (a/p)
- Jacobian Symbol (a/n)
These symbols help us determine properties of numbers in a structured way.
Legendre Symbol (a/p)
This is a special way to compare two numbers:
a
: Any integerp
: A prime number
It is written as (a/p) and tells us one of the following three things:
- (a/p) = 0 → If
a
is divisible by p
, meaning a % p == 0
- (a/p) = 1 → if there exists an integer k such that k2 = a(mod p)
- (a/p) = -1 → Otherwise (if the above two cases are false)
Example
- If
p = 7
, and a = 9
, then:
(9/7) = 1 because 9
has a square root 3
(since 3² ≡ 9
). - If
a = 2
, then (2/7) = -1 because 2
is not a square modulo 7
.
Mathematician Euler discovered a useful shortcut to compute (a/p):
(a/p) = a(p-1)/2 mod p
This formula helps in quickly checking the Legendre symbol.
Jacobian Symbol (a/n)
The Jacobian symbol is a generalization of the Legendre symbol, but it works when n is not necessarily a prime. It is calculated by breaking down n into prime factors and applying the Legendre symbol to each factor.
If n is a prime number, then:
(a/n) = (a/p)
So, Jacobian symbol = Legendre symbol when n is prime.
The Solovay–Strassen Primality Test
Now that we understand these symbols, let's go step by step through the primality test.
Step 1: Choose a Random Number
- Pick a random number a, such that 2 ≤ a ≤ n - 1.
- This number a acts as a "witness" to help determine whether n is prime.
Step 2: Check the GCD (Greatest Common Divisor)
- Compute gcd(a, n) (the largest number that divides both a and n).
- If gcd(a, n) > 1, then n is definitely composite (not prime).
- This step ensures n has no common factors with a.
Step 3: Compute Two Values
We compute two important values:
- a^((n-1)/2) mod n (using fast exponentiation)
- (a/n) (using the Jacobian symbol)
Step 4: Compare the Two Values
- If these two values do not match, then n is composite.
- If they are equal, then n is probably prime.
Why Do We Repeat This Test Multiple Times?
Since this is a probabilistic test, we cannot be 100% sure that n is prime after one test. So, we repeat the test with different random values of a multiple times.
- If the test fails even once, n is definitely composite.
- If the test passes many times, then n is probably prime.
C++ // C++ program to implement Solovay-Strassen Primality Test #include <bits/stdc++.h> using namespace std; // Function to perform modular exponentiation long long modulo(long long base, long long exponent, long long mod) { long long x = 1, y = base; while (exponent > 0) { if (exponent % 2 == 1) { x = (x * y) % mod; } y = (y * y) % mod; exponent /= 2; } return x % mod; } // Function to calculate the Jacobian symbol (a/n) int calculateJacobian(long long a, long long n) { if (a == 0) { return 0; // (0/n) = 0 } int ans = 1; if (a < 0) { a = -a; // (a/n) = (-a/n) * (-1/n) if (n % 4 == 3) { ans = -ans; // (-1/n) = -1 if n ≡ 3 (mod 4) } } if (a == 1) { return ans; // (1/n) = 1 } while (a) { if (a < 0) { a = -a; // (a/n) = (-a/n) * (-1/n) if (n % 4 == 3) { ans = -ans; // (-1/n) = -1 if n ≡ 3 (mod 4) } } while (a % 2 == 0) { a /= 2; if (n % 8 == 3 || n % 8 == 5) { ans = -ans; } } swap(a, n); if (a % 4 == 3 && n % 4 == 3) { ans = -ans; } a %= n; if (a > n / 2) { a -= n; } } return (n == 1) ? ans : 0; } // Function to perform the Solovay-Strassen Primality Test bool solovoyStrassen(long long p, int iterations) { if (p < 2 || (p % 2 == 0 && p != 2)) { return false; } for (int i = 0; i < iterations; i++) { long long a = rand() % (p - 1) + 1; long long jacobian = (p + calculateJacobian(a, p)) % p; long long mod = modulo(a, (p - 1) / 2, p); if (!jacobian || mod != jacobian) { return false; } } return true; } int main() { int iterations = 50; long long num1 = 15, num2 = 13; if (solovoyStrassen(num1, iterations)) { printf("%lld is prime\n", num1); } else { printf("%lld is composite\n", num1); } if (solovoyStrassen(num2, iterations)) { printf("%lld is prime\n", num2); } else { printf("%lld is composite\n", num2); } return 0; }
Java // Java program to implement Solovay-Strassen Primality Test import java.util.Random; class GFG { // Modulo function to perform binary exponentiation static long modulo(long base, long exponent, long mod) { long x = 1; long y = base; while (exponent > 0) { if (exponent % 2 == 1) { x = (x * y) % mod; } y = (y * y) % mod; exponent /= 2; } return x % mod; } // Function to calculate the Jacobian symbol of a given number static long calculateJacobian(long a, long n) { if (n <= 0 || n % 2 == 0) { return 0; } long ans = 1; if (a < 0) { a = -a; // (a/n) = (-a/n) * (-1/n) if (n % 4 == 3) { ans = -ans; // (-1/n) = -1 if n ≡ 3 (mod 4) } } if (a == 1) { return ans; // (1/n) = 1 } while (a != 0) { if (a < 0) { a = -a; // (a/n) = (-a/n) * (-1/n) if (n % 4 == 3) { ans = -ans; // (-1/n) = -1 if n ≡ 3 (mod 4) } } while (a % 2 == 0) { a /= 2; if (n % 8 == 3 || n % 8 == 5) { ans = -ans; } } long temp = a; a = n; n = temp; if (a % 4 == 3 && n % 4 == 3) { ans = -ans; } a %= n; if (a > n / 2) { a -= n; } } return (n == 1) ? ans : 0; } // Function to perform the Solovay-Strassen Primality Test static boolean solovayStrassen(long p, int iteration) { if (p < 2) { return false; } if (p != 2 && p % 2 == 0) { return false; } Random rand = new Random(); for (int i = 0; i < iteration; i++) { long r = Math.abs(rand.nextLong()); long a = r % (p - 1) + 1; long jacobian = (p + calculateJacobian(a, p)) % p; long mod = modulo(a, (p - 1) / 2, p); if (jacobian == 0 || mod != jacobian) { return false; } } return true; } // Driver code public static void main(String[] args) { int iter = 50; long num1 = 15; long num2 = 13; if (solovayStrassen(num1, iter)) { System.out.println(num1 + " is prime"); } else { System.out.println(num1 + " is composite"); } if (solovayStrassen(num2, iter)) { System.out.println(num2 + " is prime"); } else { System.out.println(num2 + " is composite"); } } }
Python # Python3 program to implement Solovay-Strassen # Primality Test import random # modulo function to perform binary exponentiation def modulo(base, exponent, mod): x = 1 y = base while exponent > 0: if exponent % 2 == 1: x = (x * y) % mod y = (y * y) % mod exponent //= 2 return x % mod # To calculate Jacobian symbol of a given number def calculateJacobian(a, n): if a == 0: return 0 # (0/n) = 0 ans = 1 if a < 0: # (a/n) = (-a/n)*(-1/n) a = -a if n % 4 == 3: # (-1/n) = -1 if n = 3 (mod 4) ans = -ans if a == 1: return ans # (1/n) = 1 while a: if a < 0: # (a/n) = (-a/n)*(-1/n) a = -a if n % 4 == 3: # (-1/n) = -1 if n = 3 (mod 4) ans = -ans while a % 2 == 0: a //= 2 if n % 8 == 3 or n % 8 == 5: ans = -ans # Swap a, n = n, a if a % 4 == 3 and n % 4 == 3: ans = -ans a %= n if a > n // 2: a -= n if n == 1: return ans return 0 # To perform the Solovay-Strassen Primality Test def solovoyStrassen(p, iterations): if p < 2: return False if p != 2 and p % 2 == 0: return False for _ in range(iterations): # Generate a random number a a = random.randrange(1, p) jacobian = (p + calculateJacobian(a, p)) % p mod = modulo(a, (p - 1) // 2, p) if jacobian == 0 or mod != jacobian: return False return True if __name__ == "__main__": iterations = 50 num1 = 15 num2 = 13 if solovoyStrassen(num1, iterations): print(num1, "is prime") else: print(num1, "is composite") if solovoyStrassen(num2, iterations): print(num2, "is prime") else: print(num2, "is composite")
C# // C# program to implement the Solovay-Strassen Primality Test using System; class GfG { // Function to perform modular exponentiation static long Modulo(long Base, long exponent, long mod) { long x = 1; long y = Base; while (exponent > 0) { if (exponent % 2 == 1) { x = (x * y) % mod; } y = (y * y) % mod; exponent /= 2; } return x % mod; } // Function to calculate the Jacobian symbol of a given number static long CalculateJacobian(long a, long n) { if (n <= 0 || n % 2 == 0) { return 0; } long ans = 1; if (a < 0) { a = -a; // (a/n) = (-a/n) * (-1/n) if (n % 4 == 3) { ans = -ans; // (-1/n) = -1 if n ≡ 3 (mod 4) } } if (a == 1) { return ans; // (1/n) = 1 } while (a != 0) { if (a < 0) { a = -a; // (a/n) = (-a/n) * (-1/n) if (n % 4 == 3) { ans = -ans; // (-1/n) = -1 if n ≡ 3 (mod 4) } } while (a % 2 == 0) { a /= 2; if (n % 8 == 3 || n % 8 == 5) { ans = -ans; } } long temp = a; a = n; n = temp; if (a % 4 == 3 && n % 4 == 3) { ans = -ans; } a %= n; if (a > n / 2) { a -= n; } } return (n == 1) ? ans : 0; } // Function to perform the Solovay-Strassen Primality Test static bool SolovayStrassen(long p, int iteration) { if (p < 2) { return false; } if (p != 2 && p % 2 == 0) { return false; } Random rand = new Random(); for (int i = 0; i < iteration; i++) { long r = Math.Abs(rand.Next()); long a = r % (p - 1) + 1; long jacobian = (p + CalculateJacobian(a, p)) % p; long mod = Modulo(a, (p - 1) / 2, p); if (jacobian == 0 || mod != jacobian) { return false; } } return true; } // Driver Code static void Main() { int iter = 50; long num1 = 15; long num2 = 13; if (SolovayStrassen(num1, iter)) { Console.WriteLine(num1 + " is prime"); } else { Console.WriteLine(num1 + " is composite"); } if (SolovayStrassen(num2, iter)) { Console.WriteLine(num2 + " is prime"); } else { Console.WriteLine(num2 + " is composite"); } } }
JavaScript // JavaScript program to implement Solovay-Strassen Primality Test // Modulo function to perform binary exponentiation function modulo(base, exponent, mod) { let x = 1; let y = base; while (exponent > 0) { if (exponent % 2 == 1) { x = (x * y) % mod; } y = (y * y) % mod; exponent = Math.floor(exponent / 2); } return x % mod; } // To calculate Jacobian symbol of a given number function calculateJacobian(a, n) { if (n <= 0 || n % 2 == 0) { return 0; } let ans = 1; if (a < 0) { a = -a; if (n % 4 == 3) { ans = -ans; } } if (a == 1) { return ans; } while (a !== 0) { if (a < 0) { a = -a; if (n % 4 == 3) { ans = -ans; } } while (a % 2 == 0) { a = Math.floor(a / 2); if (n % 8 == 3 || n % 8 == 5) { ans = -ans; } } let temp = a; a = n; n = temp; if (a % 4 == 3 && n % 4 == 3) { ans = -ans; } a %= n; if (a > Math.floor(n / 2)) { a -= n; } } return n === 1 ? ans : 0; } // To perform the Solovay-Strassen Primality Test function solovoyStrassen(p, iteration) { if (p < 2 || (p % 2 === 0 && p !== 2)) { return false; } for (let i = 0; i < iteration; i++) { let a = Math.floor(Math.random() * (p - 2)) + 1; let jacobian = (p + calculateJacobian(a, p)) % p; let mod = modulo(a, Math.floor((p - 1) / 2), p); if (jacobian === 0 || mod !== jacobian) { return false; } } return true; } // Driver Code let iter = 50; let num1 = 15; let num2 = 13; console.log(num1 + (solovoyStrassen(num1, iter) ? " is prime" : " is composite")); console.log(num2 + (solovoyStrassen(num2, iter) ? " is prime" : " is composite"));
Output :
15 is composite
13 is prime
Time Complexity: Using fast algorithms for modular exponentiation, the running time of this algorithm is O(k*(log n)3), where k is the number of different values we test.
Auxiliary Space: O(1) as it is using constant space for variables
Accuracy: It is possible for the algorithm to return an incorrect answer. If the input n is indeed prime, then the output will always probably be correctly prime. However, if the input n is composite, then it is possible for the output to probably be incorrect prime. The number n is then called an Euler-Jacobi pseudoprime.
Similar Reads
Check for Prime Number Given a number n, check whether it is a prime number or not.Note: A prime number is a number greater than 1 that has no positive divisors other than 1 and itself.Input: n = 7Output: trueExplanation: 7 is a prime number because it is greater than 1 and has no divisors other than 1 and itself.Input: n
11 min read
Primality Test Algorithms
Introduction to Primality Test and School MethodGiven a positive integer, check if the number is prime or not. A prime is a natural number greater than 1 that has no positive divisors other than 1 and itself. Examples of the first few prime numbers are {2, 3, 5, ...}Examples : Input: n = 11Output: trueInput: n = 15Output: falseInput: n = 1Output:
10 min read
Fermat Method of Primality TestGiven a number n, check if it is prime or not. We have introduced and discussed the School method for primality testing in Set 1.Introduction to Primality Test and School MethodIn this post, Fermat's method is discussed. This method is a probabilistic method and is based on Fermat's Little Theorem.
10 min read
Primality Test | Set 3 (MillerâRabin)Given a number n, check if it is prime or not. We have introduced and discussed School and Fermat methods for primality testing.Primality Test | Set 1 (Introduction and School Method) Primality Test | Set 2 (Fermat Method)In this post, the Miller-Rabin method is discussed. This method is a probabili
15+ min read
Solovay-Strassen method of Primality TestWe have already been introduced to primality testing in the previous articles in this series. Introduction to Primality Test and School MethodFermat Method of Primality TestPrimality Test | Set 3 (MillerâRabin)The SolovayâStrassen test is a probabilistic algorithm used to check if a number is prime
13 min read
Lucas Primality TestA number p greater than one is prime if and only if the only divisors of p are 1 and p. First few prime numbers are 2, 3, 5, 7, 11, 13, ...The Lucas test is a primality test for a natural number n, it can test primality of any kind of number.It follows from Fermatâs Little Theorem: If p is prime and
12 min read
Sieve of Eratosthenes Given a number n, find all prime numbers less than or equal to n.Examples:Input: n = 10Output: [2, 3, 5, 7]Explanation: The prime numbers up to 10 obtained by Sieve of Eratosthenes are [2, 3, 5, 7].Input: n = 35Output: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]Explanation: The prime numbers up to 35 o
5 min read
How is the time complexity of Sieve of Eratosthenes is n*log(log(n))? Pre-requisite: Sieve of Eratosthenes What is Sieve of Eratosthenes algorithm? In order to analyze it, let's take a number n and the task is to print the prime numbers less than n. Therefore, by definition of Sieve of Eratosthenes, for every prime number, it has to check the multiples of the prime an
3 min read
Sieve of Eratosthenes in 0(n) time complexity The classical Sieve of Eratosthenes algorithm takes O(N log (log N)) time to find all prime numbers less than N. In this article, a modified Sieve is discussed that works in O(N) time.Example : Given a number N, print all prime numbers smaller than N Input : int N = 15 Output : 2 3 5 7 11 13 Input :
12 min read
Programs and Problems based on Sieve of Eratosthenes
C++ Program for Sieve of EratosthenesGiven a number n, print all primes smaller than or equal to n. It is also given that n is a small number. For example, if n is 10, the output should be "2, 3, 5, 7". If n is 20, the output should be "2, 3, 5, 7, 11, 13, 17, 19".CPP// C++ program to print all primes smaller than or equal to // n usin
2 min read
Java Program for Sieve of EratosthenesGiven a number n, print all primes smaller than or equal to n. It is also given that n is a small number. For example, if n is 10, the output should be "2, 3, 5, 7". If n is 20, the output should be "2, 3, 5, 7, 11, 13, 17, 19". Java // Java program to print all primes smaller than or equal to // n
2 min read
Scala | Sieve of EratosthenesEratosthenes of Cyrene was a Greek mathematician, who discovered an amazing algorithm to find prime numbers. This article performs this algorithm in Scala. Step 1 : Creating an Int Stream Scala 1== def numberStream(n: Int): Stream[Int] = Stream.from(n) println(numberStream(10)) Output of above step
4 min read
Check if a number is Primorial Prime or notGiven a positive number N, the task is to check if N is a primorial prime number or not. Print 'YES' if N is a primorial prime number otherwise print 'NO.Primorial Prime: In Mathematics, A Primorial prime is a prime number of the form pn# + 1 or pn# - 1 , where pn# is the primorial of pn i.e the pro
10 min read
Sum of all Primes in a given range using Sieve of EratosthenesGiven a range [l, r], the task is to find the sum of all the prime numbers in the given range from l to r both inclusive.Examples: Input : l = 10, r = 20Output : 60Explanation: Prime numbers between [10, 20] are: 11, 13, 17, 19Therefore, sum = 11 + 13 + 17 + 19 = 60Input : l = 15, r = 25Output : 59E
1 min read
Prime Factorization using Sieve O(log n) for multiple queriesWe can calculate the prime factorization of a number "n" in O(sqrt(n)) as discussed here. But O(sqrt n) method times out when we need to answer multiple queries regarding prime factorization.In this article, we study an efficient method to calculate the prime factorization using O(n) space and O(log
11 min read
Java Program to Implement Sieve of Eratosthenes to Generate Prime Numbers Between Given RangeA number which is divisible by 1 and itself or a number which has factors as 1 and the number itself is called a prime number. The sieve of Eratosthenes is one of the most efficient ways to find all primes smaller than n when n is smaller than 10 million or so. Example: Input : from = 1, to = 20 Out
3 min read
Segmented Sieve Given a number n, print all primes smaller than n. Input: N = 10Output: 2, 3, 5, 7Explanation : The output â2, 3, 5, 7â for input N = 10 represents the list of the prime numbers less than or equal to 10. Input: N = 5Output: 2, 3, 5 Explanation : The output â2, 3, 5â for input N = 5 represents the li
15+ min read
Segmented Sieve (Print Primes in a Range) Given a range [low, high], print all primes in this range? For example, if the given range is [10, 20], then output is 11, 13, 17, 19. A Naive approach is to run a loop from low to high and check each number for primeness. A Better Approach is to precalculate primes up to the maximum limit using Sie
15 min read
Longest sub-array of Prime Numbers using Segmented Sieve Given an array arr[] of N integers, the task is to find the longest subarray where all numbers in that subarray are prime. Examples: Input: arr[] = {3, 5, 2, 66, 7, 11, 8} Output: 3 Explanation: Maximum contiguous prime number sequence is {2, 3, 5} Input: arr[] = {1, 2, 11, 32, 8, 9} Output: 2 Expla
13 min read
Sieve of Sundaram to print all primes smaller than n Given a number n, print all primes smaller than or equal to n.Examples: Input: n = 10Output: 2, 3, 5, 7Input: n = 20Output: 2, 3, 5, 7, 11, 13, 17, 19We have discussed Sieve of Eratosthenes algorithm for the above task. Below is Sieve of Sundaram algorithm.printPrimes(n)[Prints all prime numbers sma
10 min read