Preparation of Amines Last Updated : 26 Apr, 2024 Comments Improve Suggest changes Like Article Like Report Amines are organic compounds formed by substituting an alkyl or aryl group for one or more hydrogen atoms in an ammonia (NH3) molecule. They can be found in nature in proteins, vitamins, alkaloids, and hormones. There are different methods of preparation of amines such as Nucleophilic Substitution Reaction, reduction of amides and nitriles, Hoffman arrangements. In this article, we will learn in detail about preparation of amine along with their chemical reactions. Method of Preparation of Amines There are different methods to prepare amines: From Reduction of Nitro Compound By passing hydrogen gas through a finely divided nickel, palladium, or platinum, as well as by reduction with metals in an acidic medium, nitro compounds are reduced to amines. Nitroalkanes can also be reduced to the corresponding alkanamines in the same way. Reduction with iron scrap and hydrochloric acid is preferred because the FeCl2 formed during the reaction is hydrolyzed, releasing hydrochloric acid. As a result, only a trace of hydrochloric acid is required to initiate the reaction. From Ammonolysis Alkyl Halide The bond between carbon-halogen and alkyl or benzyl halides can be easily broken by a nucleophilic reaction. As a result, when an alkyl or benzyl halide reacts with an ethanolic solution of ammonia, a nucleophilic substitution reaction occurs in which the halogen atom is replaced by an amino (–NH2 ) group. Ammonolysis is the process by which an ammonia molecule cleaves the C–X bond. The reaction takes place in a sealed tube at 373 K. The resulting primary amine is a nucleophile and can react with an alkyl halide to form secondary and tertiary amines, and finally quaternary ammonium salt. By treating the ammonium salt with a strong base, the free amine can be obtained: Ammonolysis of alkyl halide has one disadvantage during the reaction it forms a mixture of primary, secondary, and tertiary amines and quaternary ammonium so to get Primary amine, as a major product we pass a large excess of ammonia. From Reduction of NitrilesPrimary amines are formed when nitrites are reduced with lithium aluminum hydride (LiAlH4) or catalytically hydrogenated. This reaction is used to prepare amines with one more carbon atom than the starting amine, which is known as amine series ascent. H2/Ni R-CN -------------------------> R-CH2-NH2 Na(Hg) /C2H5OH From Reduction of Amide When amides are reduced with lithium aluminum hydride, amines are formed. (i) LiAlH4 R-CO-NH2 -----------------------------> R-CH2-NH2 (ii) H2O From Gabriel Phthalimide Synthesis Gabriel synthesis is a method for producing primary amines. When phthalimide is treated with ethanolic potassium hydroxide, it forms a potassium salt of phthalimide, which when heated with an alkyl halide and then alkaline hydrolyzed yields the corresponding primary amine. Gabriel's phthalimide synthesis method does not produce aromatic primary amines because aryl halides do not undergo nucleophilic substitution reaction with the anion formed by phthalimide. From Hoffmann Bromamide Degradation ReactionHoffmann developed a method for producing primary amines by treating an amide with bromine in an aqueous or ethanolic sodium hydroxide solution. An alkyl or aryl group migrates from the amide's carbonyl carbon to the nitrogen atom during this degradation reaction. The amine thus formed has one fewer carbon atom than the amide. R-CO-NH2 + Br2 + 4NaOH -----------------------------> R-NH2 + Na2CO3 + 2NaBr + 2H2O (Amide) (Sodium Hydroxide) (Amine) Reductive Animation of Aldehydes and Ketones Reductive animation of aldehydes and ketones produces 1°, 2°, and 3° amine. This reaction takes place in 2 step first is nucleophilic addition which gives imine and the second step is the reduction of imine which produce amine. Curtius Reaction Curtius reaction is also called Curtius rearrangement. In this reaction decomposition of acyl azide takes place which forms isocyanate. Isocyanate is unstable which on hydrolysis gives amine. Schmidt Reaction In Schmidt, reaction amines can be prepared with azide and a carboxylic acid. Also, Check Classification of AminesNomenclature of AminesChemical Reactions of AminesPhysical Properties of AminesSample Problems on Preparation of AminesQuestion 1: What are primary, secondary, and tertiary amines? give examples. Answer: One hydrogen atom of NH3 is replaced with an alkyl or aryl group in primary or 1° amine. Two hydrogen atoms of NH3 are replaced with an alky or aryl group in secondary or 2° amine. Three hydrogen atoms of NH3 are replaced with an alkyl or aryl group in tertiary amine. Example: CH3-NH2, CH3-NH-CH3, CH3-N-(CH3)2 Methyl Amine (1°) Dimethyl Amine (2°) Trimethyl Amine (3°) Question 2: Write the IUPAC name of, CH3–CH2–NH2CH3–CH2–CH2–NH2C6H5-NH2.Answer: The IUPAC name are- CH3–CH2–NH2 - EthanamineCH3–CH2–CH2–NH2 - Propan-1-amineC6H5-NH2 - Benzenamine.Question 3: What happens when nitrobenzene is reduced? Write the chemical equation of the reaction. Answer: Reduction of nitro benzene gives aniline as final product. Chemical equation- Question 4: What is the method to prepare ethylamine in the lab? Answer: Hofmann's bromide reaction is used In the laboratory, we can make ethylamine using Hofmann's bromide reaction. Bromine and potassium hydroxide solution are used to heat the propionamide. Question 5: Which is more soluble in water primary amine or tertiary amines give a reason? Answer: Tertiary amines are more soluble in water because primary amines can form hydrogen bonds with water but tertiary amines cannot, primary amines are less soluble. Comment More infoAdvertise with us Next Article Preparation of Amines N naimishsahu08 Follow Improve Article Tags : School Learning Class 12 Chemistry Chemistry-Class-12 Organic-Chemistry +1 More Similar Reads CBSE Class 12 Chemistry Notes CBSE Class 12 Chemistry Notes: Chemistry is an important subject in CBSE Class 12th. It is a very scoring exam in board exam as well as IIT JEE entrance. By taking help of this CBSE Class 12th Chemistry notes, you can ace the CBSE Class 12th board exam. GeeksforGeeks has compiled the complete notes 9 min read Chapter 1: The Solid StateDifference between Crystalline and Amorphous SolidsA solid state is simply one of the states of matter. One of the many different states of matter is solid. Solids have a distinct volume, mass, and shape. Solids differ from liquids and gases in that they exhibit unique characteristics. Â These solid states or shapes depending on how the particles are 7 min read Crystal Lattice and Unit CellIn crystalline solids, their constituent particles have a definite arrangement in three dimensions. The positions of these particles in the crystal relative to each other are usually represented by points. The dispensation of these unendurable sets of points is called a space lattice. The positions 7 min read Calculate the Number of Particles per unit cell of a Cubic Crystal SystemWe are mostly surrounded by solids, which we use more frequently than liquids and gases. We require solids with a wide range of properties for various applications. These properties are determined by the nature of the constituent particles and the binding forces that exist between them. As a result, 5 min read Close Packing in CrystalsIn the formation of crystals, the constituent particles (atoms, ions, or molecules) are closely intertwined. A tightly packed arrangement is one in which maximum available space is occupied by leaving minimum free space. This corresponds to the condition of the maximum possible density. The closer t 7 min read Packing Efficiency of Unit CellA crystal lattice is made up of a relatively large number of unit cells, each of which contains one constituent particle at each lattice point. A three-dimensional structure with one or more atoms can be thought of as the unit cell. Regardless of the packing method, there are always some empty space 10 min read Imperfections or Defects in a SolidMatter can exist in broadly three states named solids, liquids, and gases. Solids are those substances that have short intermolecular forces between them that keep molecules (atoms or ions) closely packed. They have definite mass, volume, and shape. Their intermolecular forces are strong and intermo 11 min read Chapter 2: SolutionsWhat is a Solution?InSolutions are a part of our daily lives because they can be found in almost everything we use in our daily lives, such as soda, deodorant, sugar, salt, and so on. A solution is a type of mixture in which two or more substances combine to form a single solution; it can also be described as simple, 11 min read SolubilitySolubility is a fundamental concept in chemistry that describes the ability of a substance to dissolve in a particular solvent under specific conditions to form a solution. A fluid may or may not dissolve completely in a fluid. Understanding the concept of solubility is essential in many fields of s 12 min read Vapour PressureVapour pressure is the force exerted by a liquid's (or solid's) vapour above the surface of the liquid. At a particular temperature and thermodynamic equilibrium, this pressure is formed in a closed container. The rate of liquid evaporation is controlled by the equilibrium vapour pressure. The vapou 13 min read Colligative PropertiesColligative Properties of any solution is the property of the solution that depends on the ratio of the total number of solute particles and the total number of solvent particles. Changing the moles or number of particles of solute or solvent changes the colligative properties of the solution. These 11 min read Osmosis and Osmotic PressureA solution is a homogeneous mixture of two or more particles with particle sizes smaller than one nanometer. Sugar and salt solutions in water, as well as soda water, are common examples of solutions. In a solution, all of the components appear as a single phase. There is particle homogeneity, which 11 min read Abnormal Molar MassesIn chemistry, abnormal molar masses occur when the molar masses are estimated and are higher or lower than the predicted value. The colligative qualities are used to calculate these. Elevation of boiling point, decreased relative vapour pressure, freezing point depression, and alleviation of osmotic 8 min read Chapter 3: ElectrochemistryRedox ReactionsRedox Reactions are oxidation and reduction reactions that happen simultaneously in a chemical reaction and in this, the reactant undergoes a change in its oxidation state. Redox stands for Reduction - Oxidation. Redox reaction is a common term used in both Chemistry and Biology. They are a certain 14 min read Nernst EquationThe electrical potential disparity across the cell membrane of all living cells is called the membrane potential, the inner part of the cell being negative compared to the outside. The magnitude of the membrane potential varies from cell to cell and in an exceptional cell following its functional st 6 min read Conductance of Electrolytic SolutionsElectrochemistry is a branch of chemistry, and it deals with the study of the production of electricity from the energy released during spontaneous chemical reactions and the use of electrical energy to bring about non-spontaneous (requiring the input of external energy) chemical transformation. Ele 10 min read Variation of Conductivity and Molar conductivity with ConcentrationElectrochemistry is the study of chemical reactions that occur in a solution at the interface of an electron conductor (the electrode: a metal or a semiconductor) and an ionic conductor (the electrolyte). Electron transfer occurs between the electrode and the electrolyte or species in solution in th 6 min read Equivalent Conductance FormulaElectrochemistry includes the concept of equivalent conductance, which is the conductance of a volume of solution containing one equivalent of an electrolyte. Let's study the idea of the equivalent conductance formula. Equivalent ConductanceThe term "equivalent conductance" refers to the conductance 9 min read ElectrolysisElectrolysis is the process of decomposing the ionic compound into its constituent elements by passing the electric current into the solution of the ionic compound. The concept of electrolysis was first given by the famous scientist of the 19th century Michael Faraday. It is a chemical process that 11 min read Electrochemistry - Cells and BatteriesA collection of electrochemical cells used as a power source is referred to as a battery. An oxidation-reduction reaction forms the basis of an electrochemical cell. In general, every battery is a galvanic cell that generates chemical energy through redox reactions between two electrodes. Batteries 9 min read Galvanic CellGalvanic Cell also called Voltaic Cell is an electrochemical device that converts spontaneous chemical energy generated in a redox reaction into electrical energy. Table of Content What is Galvanic Cell?Cell DefinitionElectrolytic Cell DefinitionElectrochemical Cell DefinitionPrimary Cell & Seco 12 min read Fuel Cells - Definition, Types, Advantages, LimitationsThe study of the link between electrical energy and chemical changes is the subject of electrochemistry, a chemistry subdiscipline. Electrochemical reactions are chemical processes that include the input or creation of electric currents. A fuel cell is an electrochemical cell that uses an electroche 10 min read Chapter 4: Chemical KineticsRate of ReactionRate of Reaction or Reaction Rate in chemistry is defined as the speed or the rate at which a chemical reaction takes place. The rate of a Chemical Reaction is directly proportional to the increase in the concentration of a product per unit of time and to the decrease in the concentration of a react 10 min read Factors Affecting Rate of a Chemical ReactionThe rate of reaction is the pace at which the products of a chemical reaction are created from the reactants. It provides some information about the time frame in which a reaction can be accomplished. For example, the reaction rate of cellulose combustion in fire is extremely high, and the reaction 5 min read Integrated Rate LawsIntegrated Rate Law is one of the fundamental concepts in the field of chemical kinetics, which is the branch of chemistry that deals with the speed or rate of reactions and various other factors affecting them. Integrated Rate Law tells us about the rate of the reaction for various different reacti 15+ min read Collision TheoryCollision Theory says that when particles collide (strike) each other, a chemical reaction occurs. However, this is necessary but may not be a sufficient condition for the chemical reaction. The collision of molecules must be sufficient to produce the desired products following the chemical reaction 7 min read Activation Energy FormulaActivation energy of a chemical reaction is defined as the least amount of energy necessary to initiate the reaction. It can be interpreted as the differential in energy content between molecules and atoms that causes it to be in an activation or transition-state configuration while the associated a 4 min read Temperature Dependence of the Rate of a ReactionThe meal cooks slowly if the gas is kept at a low temperature while cooking. When we raise the temperature to its highest setting, however, the food cooks quickly. As a result, increasing the temperature increases the rate of a reaction. The Arrhenius equation helps explain this rate-temperature rel 10 min read Chapter 5: Surface ChemistryAdsorption - Definition, Mechanism and TypesAdsorption is the adhesion of atoms, ions, or molecules to a surface from a gas, liquid, or dissolved solids. This process forms an adsorbate film on the adsorbent's surface. This differs from absorption, which occurs when a fluid dissolves or permeates a liquid or solid. Adsorption is a surface phe 7 min read Adsorption vs AbsorptionAdsorption and Absorption are the two important processes of physical chemistry that help in various industrial processes to manufacture and purification of various chemical compounds. While the two terms sound almost similar there exists a significant difference between them. Adsorption is a surfac 10 min read Catalysis - Definition, Mechanism, Types, CharacteristicsCatalysis in Chemistry is defined as the process in which the rate of the reaction is influenced by the presence of some specific substance. These specific substances are called Catalysts. The catalyst is never consumed during the chemical reaction. A catalyst changes the activation energy of the re 8 min read ColloidsColloids or Colloidal Solution is a type of mixture in which insoluble components are suspended on a microscopic scale in some another component. Colloids are essential components in the daily lives of the common man, as we use or consume colloids and we even don't know. From Jellys to Mayonese to t 11 min read Classification of ColloidsBefore we get into the specifics of how we classify colloids, it's important to first define what a colloid is. A colloid is a material made up of big molecules mixed with another substance in chemistry. This encompasses a wide range of items, many of which you may already have in your house, which 8 min read Emulsions - Definition, Types, Preparation, PropertiesDid you know that "emulsion" comes from the Latin word "mulgeo," which meaning "to milk"? Milk is a fat-water emulsion containing a variety of additional ingredients. But what precisely are Emulsions, and what role do they play in our daily lives and in the workplace? Emulsions are combinations of t 10 min read Chapter 6: General Principles and Processes of Isolation of ElementsOccurrence of Metals, Minerals and OresMetals are a crucial element of our existence, even if we don't realize it. Since the industrial era, we have had a heavy reliance on metals. From construction to jewellery, we use them for everything. But where do we acquire these metals from? Let us look into their occurrence. Before studying the 8 min read What is meant by Concentration of Ores?Metals are found in ore in complexes with other elements. The process of removing metal from its ore is known as metal extraction. The methods of extracting metals from their ores and refining them are referred to as metallurgy. All of the metals cannot be extracted using a single process. Depending 8 min read Occurrence and Extraction of MetalsMetals are minerals or substances that occur naturally beneath the Earth's surface. The majority of metals are lustrous or glossy. Metals are inorganic, which implies they were formed from non-living substances. Metals are typically found in the form of metal ores, which are linked to one another an 6 min read Ellingham DiagramThe Gibbs equation enables us to predict the spontaneity of a process based on enthalpy and entropy measurements. The Ellingham diagram was developed by H.G.T. Ellingham to predict the spontaneity of metal oxide reduction. One of the most straightforward graphical representations of Thermodynamic st 7 min read Oxidation and Reduction ReactionsOxidation and Reduction reactions are simply called Redox reactions. There are chemical reactions in which the oxidation number of the chemical species involved in the reaction changes. Oxidation and reduction Reactions involve a wide variety of processes. For example, oxidation-reduction reactions 8 min read Methods of Refining of MetalsMinerals and ores abound in the earth's crust. Some ores have proven to be a valuable resource for humanity. Iron, for example, derived from iron ore (Hematite), laid the groundwork for the industrial revolution. Aluminium, on the other hand, was a critical strategic resource for aviation during Wor 7 min read Uses of Aluminum, Copper, Zinc and IronThe earth's crust is abundant in minerals and ores. Some ores have proven to be a valuable resource for humanity. Iron, for example, derived from iron ore (Hematite), laid the groundwork for the industrial revolution. Aluminum, on the other hand, was a critical strategic resource for aviation during 8 min read Chapter 7: The p-Block ElementsGroup 15 elements - The Nitrogen FamilyThe contemporary periodic table, devised by Dimitri Mendeleev, lists all known elements according to their atomic number, which is unique to each element. The periodic table was created as a result of such an arrangement. The items with comparable qualities were grouped together in a column. Nitroge 6 min read Dinitrogen - Definition, Preparation, Properties, UsesNitrogen is the lightest element in Periodic Table Group 15, also known as the pnictogens. Dinitrogen, a colourless and odourless diatomic gas with the formula N2, is formed when two atoms of the element join together at STP. Dinitrogen is the most abundant uncombined element, accounting for around 6 min read Ammonia |Structure, Properties, Preparation, UsesAmmonia (NHâ) is a colorless gas with a sharp, pungent odor. It is a compound of nitrogen and hydrogen and plays a crucial role in both the industrial sector and biological processes. Let's learn about ammonia in detail, including its structure, properties and uses. AmmoniaAmmonia is nitrogen and hy 7 min read Oxides of NitrogenNitrogen combines with oxygen to generate nitrogen oxides in a variety of forms. Its oxides have distinct oxidation states, ranging from +1 to +5. Nitrogen oxides with a greater oxidation state are more acidic than those with a lower oxidation state. Nitrogen Oxides are a combination of gases that i 9 min read Allotropes of PhosphorusDespite the fact that people have been using the periodic table with phosphorus (P) in it for thousands of years, it was not until 1669 that it was isolated and named by a chemist named Brand. Phosphorus is an element that cannot be found naturally in our environment. It is highly reactive. Phosphor 5 min read Phosphine - Structure, Preparation, Properties, UsesThe final electron of a P block element enters one of the three p-orbitals of the shell in which it is found. There are six groups of p-block elements since a p-subshell has three degenerate p-orbitals, each of which may hold two electrons. Because of their tendency to lose an electron, P block elem 5 min read Phosphorus Halides - Structure, Properties, Uses, EffectsPhosphorus is required for life, mostly through phosphates, which are molecules that contain the phosphate ion. Phosphates are found in DNA, RNA, ATP, and phospholipids, which are all complex molecules that are required by cells. Phosphate was first found in human urine, and bone ash was a significa 8 min read Oxoacids of PhosphorusOxoacids are acids that contain oxygen. Phosphorus is one such element that can be used to create a variety of oxoacids. H3PO4, H3PO3, and other common oxyacids The phosphorus atom is tetrahedrally surrounded by other atoms in phosphorus oxoacids. In general, it is obvious that these acids have at l 6 min read ChalcogensChalcogens are the Group 16 elements of the modern periodic table consisting of 5 elements oxygen, sulphur, selenium, tellurium and polonium. The elements in this group are also known as chalcogens or ore-forming elements because many elements can be extracted from sulphide or oxide ores. The chalco 9 min read Dioxygen - Definition, Properties, Preparation, UsesOxygen is a member of the periodic table's chalcogen group, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements and other compounds. Oxygen is the most abundant element on Earth, and it is the third-most abundant element in the universe after hydrogen and 5 min read Simple Oxides - Definition, Types, ExamplesOxides are binary chemicals generated when oxygen reacts with other elements. In nature, oxygen is extremely reactive. They create oxides when they react with metals and nonmetals. Based on their acid-base properties, oxides are classified as neutral, amphoteric, basic, or acidic. An acidic oxide is 5 min read Ozone - Preparation, Properties, Uses, EffectsOzone is too reactive to stay in the atmosphere at sea level for long. It is formed from atmospheric oxygen in the presence of sunlight at a height of about 20 kilometres. This ozone layer shields the earth's surface from an excess of ultraviolet (UV) radiation. It is an unstable, blue, diamagnetic 7 min read Allotropes of SulphurThe tenth most prevalent element in the universe is sulphur. It can also be found in the form of sulphide in a variety of meteorites. The existence of a sulphur element in molten, gaseous, and solid states gives the Jupiter moon lo its unusual colours. Sulphur is the sixth most prevalent element on 7 min read Sulphur Dioxide - Structure, Preparation, Properties, UsesThe p-block, which spans groups 13 to 18, is located on the right side of the normal periodic table. Their electrical configuration is ns2 np1â6 in general. Despite being the first element in group 18, helium is not part of the p-block. Except for the first row, each row in the table has six p-eleme 8 min read Oxoacids of SulphurOxoacids are oxygen-containing acids. Many oxoacids, such as H2SO4, H2SO3, and others, are known to be formed by sulphur. When sulphur is coordinated to oxygen, it forms a tetrahedral structure in oxoacids. Sulfur oxoacids are sulphur, oxygen, and hydrogen-containing chemical compounds. Sulfuric aci 6 min read Sulfuric Acid - H2SO4Sulfuric Acid or Sulphuric Acid is a mineral acid consisting of one Sulfur, four Oxygen, and two Hydrogen atoms. The chemical or molecular formula of Sulfuric Acid is H2SO4. Sulfuric Acid is one most important commercially used chemicals. It is also known as Mattling acid or Hydrogen Sulfate or Vitr 8 min read Group 17 Elements: The HalogensThe Halogens are the elements in the periodic table of Group 17 of the periodic table. Fluorine, chlorine, bromine, and iodine are examples of reactive nonmetals. Halogens are nonmetals that are extremely reactive. These elements have a lot in common in terms of properties. Group 17 elements are kno 8 min read Chlorine (Cl)Chlorine is a chemical element that is represented by the symbol Cl. Chlorine is present in the 17th Group (Halogen Group) and 3rd Period of the Periodic table. Chlorine is the second lightest halogen that lies between Fluorine and Bromine in the halogen group. Chlorine is a yellow-green, pungent-sm 6 min read Hydrogen Chloride - Definition, Preparation, Properties, UsesAs a hydrogen halide, the compound hydrogen chloride has the chemical formula HCl. It is a colourless gas at ambient temperature that emits white fumes of hydrochloric acid when it comes into contact with air-water vapour. In technology and industry, hydrogen chloride gas and hydrochloric acid are c 7 min read Oxoacids of Halogens - Definition, Properties, StructureThe elements of Group 17 from top to bottom are fluorine, chlorine, bromine, iodine, and astatine. They are referred to as halogens because they create salt. This group's members are very similar to one another. They have a consistent pattern of physical and chemical features. The valence shell of e 7 min read Interhalogen CompoundsThe p-block elements are known to be those elements in which the electron enters in one of the three orbitals of the p-block. There are 6 groups of p-block elements. The properties of p-block elements are that they are shiny and are good conductor of heat and electricity since they have free electro 6 min read Group 18 Elements - Characteristics of Noble GasesThe group's members have eight electrons in their outermost orbit (except helium which has two electrons). As a result, they have a stable configuration. Group 18 elements are gases that are chemically unreactive, meaning they do not form many compounds. Be a result, the elements are referred to as 7 min read Chapter 8: d- and f-Block ElementsPosition of Elements in the Periodic TableThe elements in the middle of the periodic table, from Group 3 to 12, are referred to as d-block elements. The name d-block comes from the fact that the final electron enters the d-orbital of the penultimate shell. These are frequently referred to as transition elements because their properties fall 6 min read Electronic Configuration of the d-block ElementsElectronic Configuration of the d-block elements are those that can be found in the contemporary periodic table from the third to the twelfth groups. These elements' valence electrons are located in the d orbital. d-block elements are sometimes known as transition elements or transition metals. The 7 min read General Properties of Transition Elements (d-block)Elements with partially filled d orbitals are known as transition elements (sometimes known as transition metals). Transition elements are defined by IUPAC as elements with a partially full d subshell or elements capable of forming stable cations with an incompletely filled d orbital. In general, an 7 min read Lanthanides - Definition, Configuration, PropertiesLanthanides are the contemporary periodic table's rare earth elements, with atomic numbers ranging from 58 to 71 after Lanthanum. Rare earth metals are so-called because these elements are extremely rare (3 Ã 10-4 % of the Earth's crust). As lanthanide orthophosphates, they are accessible in 'monazi 8 min read Actinides - Definition, Properties, Formation, UsesThe d and f block mainly contains elements that include groups 3-12. The f block has elements in which 4f and 5f are progressively filled. These elements are placed below the periodic table in a separate table. The d and f block elements are majorly known as transition or inner transition elements. 9 min read Some Applications of d and f-block ElementsTransition metals are typically characterized as elements with or capable of forming partially filled 'd' orbitals. Transition elements are d-block elements in groupings of three to eleven. Inner transition metals, which include the lanthanides and actinides, are another name for the f block element 6 min read Chapter 9: Coordination CompoundsImportant Terms pertaining to Coordination CompoundsA coordination compound is made up of a central metal atom or ion that is surrounded by a number of oppositely charged ions or neutral molecules. All the ions or molecules in coordination compounds are connected with coordinate bonds to the central metal atom. When coordination compounds are dissolv 6 min read Nomenclature of Coordination CompoundsThe ability of the transition metals to form the complexes is referred to as coordination compounds. This property is not only applicable to transition metal only but also shown by some other metals. Werner, in 1893 was the first scientist to propose the theory of coordination compounds and also pur 10 min read Metal Carbonyls - OrganometallicsCarbonyls are coordination complexes that are formed by transition metals and the carbonyl ligand i.e. carbon-monoxide ligand. These are also termed homoleptic carbonyls. These complexes have a simple and well-defined structure which is generally tetrahedral and octahedral in nature. Nomenclature of 5 min read Werner's TheoryWerner's Theory of Coordination Compounds was proposed by a Swiss Chemist Alfered Werener in 1898. Werner studied the physical, chemical, and isomeric properties of several coordination compounds and postulated some theories. In this article, we will learn about, Werner's Coordination theory, its po 8 min read Valence Bond Theory in Coordination CompoundsThere have been numerous approaches proposed to explain the nature of bonding in coordination molecules. One of them is the Valence Bond (VB) Theory. The Valence Bond Theory was developed to describe chemical bonding using the quantum mechanics method. This theory is largely concerned with the produ 9 min read Crystal Field TheoryA coordination compound consists of a metal atom or ion at the centre, surrounded by a number of oppositely charged ions or neutral molecules. A coordinate connection connects these ions or molecules to the metal atom or ion. When dissolved in water, they do not dissociate into simple ions. Crystal 7 min read Isomerism in Coordination CompoundsIsomerism in Coordination Compounds as the name suggests explores the concept of Isomerism in Coordination Compounds i.e., generally compounds formed by d-block elements. Isomerism is the phenomenon of exhibiting different molecular structures by the compounds with same molecular formula. The phenom 10 min read Applications of Coordination CompoundsChemical compounds made up of an array of anions or neutral molecules linked to a central atom by coordinate covalent bonds are known as coordination compounds. Coordination compounds are also known as coordination complexes. Ligands are the molecules or ions that are bonded to the central atom (als 7 min read Like