Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
    • Practice Coding Problems
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • DSA
  • Practice Problems
  • C
  • C++
  • Java
  • Python
  • JavaScript
  • Data Science
  • Machine Learning
  • Courses
  • Linux
  • DevOps
  • SQL
  • Web Development
  • System Design
  • Aptitude
  • GfG Premium
Open In App

Pin diagram of 8086 microprocessor

Last Updated : 04 Sep, 2024
Comments
Improve
Suggest changes
Like Article
Like
Report

The 8086 chip, presented by Intel in 1978, is a critical part in the development of processing innovation. Its pin outline is a basic part of figuring out its design and usefulness. The pin chart gives a visual portrayal of the chip's outer associations and their individual capabilities, including power supply, ground, information, address, and control lines. Each pin is assigned for explicit jobs, for example, information movement, memory tending to, and framework control, which are fundamental for connecting with other equipment parts. Breaking down the 8086 pin outline is vital for planning and investigating frameworks that consolidate this persuasive microchip.

What is 8086 Microprocessor?

The 8086 microchip, created by Intel in 1978, is a 16-digit processor that noticeable a huge headway in figuring innovation. It includes a 16-cycle information transport and a 20-bit address transport, permitting it to address up to 1 MB of memory. The 8086 is known for its portioned memory engineering, which partitions memory into sections for more proficient access and the executives. It upholds a rich arrangement of guidelines and methods of activity, making it flexible for different applications. As a basic part in early PCs, the 8086 made ready for the improvement of later chips and impacted PC engineering plans.

Pin diagram of 8086 microprocessor is as given below: 

Intel 8086 is a 16-bit HMOS microprocessor. It is available in 40 pin DIP chip. It uses a 5V DC supply for its operation. The 8086 uses a 20-line address bus. It has a 16-line data bus. The 20 lines of the address bus operate in multiplexed mode. The 16-low order address bus lines have been multiplexed with data and 4 high-order address bus lines have been multiplexed with status signals. 

AD0-AD15: Address/Data bus. These are low order address bus. They are multiplexed with data. When AD lines are used to transmit memory address the symbol A is used instead of AD, for example A0-A15. When data are transmitted over AD lines the symbol D is used in place of AD, for example D0-D7, D8-D15 or D0-D15. 

A16-A19: High order address bus. These are multiplexed with status signals. 

S2, S1, S0: Status pins. These pins are active during T4, T1 and T2 states and is returned to passive state (1,1,1 during T3 or Tw (when ready is inactive). These are used by the 8288 bus controller for generating all the memory and I/O operation) access control signals. Any change in S2, S1, S0 during T4 indicates the beginning of a bus cycle.  

S2S1S0Characteristics
000Interrupt acknowledge
001Read I/O port
010Write I/O port
011Halt
100Code access
101Read memory
110Write memory
111Passive state

A16/S3, A17/S4, A18/S5, A19/S6 : The specified address lines are multiplexed with corresponding status signals. 

A17/S4A16/S3Function
00Extra segment access
01Stack segment access
10Code segment access
11Data segment access

HE'/S7: Bus High Enable/Status. During T1 it is low. It is used to enable data onto the most significant half of data bus, D8-D15. 8-bit device connected to upper half of the data bus use BHE (Active Low) signal. It is multiplexed with status signal S7. S7 signal is available during T2, T3 and T4. 

RD': This is used for read operation. It is an output signal. It is active when low. 

READY : This is the acknowledgement from the memory or slow device that they have completed the data transfer. The signal made available by the devices is synchronized by the 8284A clock generator to provide ready input to the microprocessor. The signal is active high(1). 

INTR : Interrupt Request. This is triggered input. This is sampled during the last clock cycles of each instruction for determining the availability of the request. If any interrupt request is found pending, the processor enters the interrupt acknowledge cycle. This can be internally masked after resulting the interrupt enable flag. This signal is active high(1) and has been synchronized internally. 

NMI : Non maskable interrupt. This is an edge triggered input which results in a type II interrupt. A subroutine is then vectored through an interrupt vector lookup table which is located in the system memory. NMI is non-maskable internally by software. A transition made from low(0) to high(1) initiates the interrupt at the end of the current instruction. This input has been synchronized internally. 

INTA : Interrupt acknowledge. It is active low(0) during T2, T3 and Tw of each interrupt acknowledge cycle. 

MN/MX' : Minimum/Maximum. This pin signal indicates what mode the processor will operate in. 

RQ'/GT1', RQ'/GT0' : Request/Grant. These pins are used by local bus masters used to force the microprocessor to release the local bus at the end of the microprocessor's current bus cycle. Each of the pin is bi-directional. RQ'/GT0' have higher priority than RQ'/GT1'. 

LOCK' : Its an active low pin. It indicates that other system bus masters have not been allowed to gain control of the system bus while LOCK' is active low(0). The LOCK signal will be active until the completion of the next instruction. 

TEST' : This examined by a ‘WAIT’ instruction. If the TEST pin goes low(0), execution will continue, else the processor remains in an idle state. The input is internally synchronized during each of the clock cycle on leading edge of the clock. 

CLK : Clock Input. The clock input provides the basic timing for processing operation and bus control activity. Its an asymmetric square wave with a 33% duty cycle. 

RESET : This pin requires the microprocessor to terminate its present activity immediately. The signal must be active high(1) for at least four clock cycles. 

Vcc : Power Supply( +5V D.C.) 

GND : Ground 

QS1,QS0 : Queue Status. These signals indicate the status of the internal 8086 instruction queue according to the table shown below:

QS1QS0Status
00No operation
01First byte of op code from queue
10Empty the queue
11Subsequent byte from queue

M/IO': This signal is used to distinguish between memory and I/O operations. The M Signal is Active high whereas the IO' Signal is Active Low. When this Pin is High, the memory operations takes place. On the other hand, when the Pin is low, the Input/Output operations from the peripheral devices takes place.  

=DT/R : Data Transmit/Receive. This pin is required in minimum systems, that want to use an 8286 or 8287 data bus transceiver. The direction of data flow is controlled through the transceiver. 

DEN: Data enable. This pin is provided as an output enable for the 8286/8287 in a minimum system which uses transceiver. DEN is active low(0) during each memory and input-output access and for INTA cycles. 

HOLD/HOLDA: HOLD indicates that another master has been requesting a local bus .This is an active high(1). The microprocessor receiving the HOLD request will issue HLDA (high) as an acknowledgement in the middle of a T4 or T1 clock cycle. 

ALE : Address Latch Enable. ALE is provided by the microprocessor to latch the address into the 8282 or 8283 address latch. It is an active high(1) pulse during T1 of any bus cycle. ALE signal is never floated, is always integer. 

Conclusion

The 8086 chip addresses a milestone in the development of PC innovation, presenting a 16-bit design that laid the foundation for future progressions. Its capacity to address up to 1 MB of memory and its fragmented memory model gave huge enhancements in figuring power and effectiveness. Understanding its pin outline and inward construction is fundamental for both authentic setting and viable applications in framework plan and investigating. The tradition of the 8086 is apparent in its impact on resulting processors and its part in forming the advancement of current registering frameworks.


Y

Yash_R
Improve
Article Tags :
  • Computer Organization & Architecture
  • system-programming
  • microprocessor

Similar Reads

    Microprocessor Tutorials
    A microprocessor is fabricated on a single integrated circuit (IC) or chip that is used as a central processing unit (CPU). It is used as an electronic device, giving output instructions and executing data. In the microprocessor tutorial page, We will cover some basic topics like the introduction to
    9 min read

    Introduction

    Introduction of Microprocessor
    In this article we will go through the Microprocessor, we will first define what is a Microprocessor, then we will go through its different types with its block diagram and we will see different types of processors, At last, we will conclude our article with some applications and FAQs.What is Microp
    6 min read
    Types of Microprocessors
    This article provides an overview of the microprocessor, one of the most important components of a modern computing device. It describes how they function like the "brain" of the computer and enumerates the different types of Microprocessors. This also includes the vector processors, array processor
    6 min read
    Microprocessor | Intel x86 evolution and main features
    Intel x86 architecture has evolved over the years. From a 29, 000 transistors microprocessor 8086 that was the first introduced to a quad-core Intel core 2 which contains 820 million transistors, the organization and technology have changed dramatically. Some of the highlights of the evolution of x8
    5 min read
    Evolution of Microprocessors
    Transistor was invented in 1948 (23 December 1947 in Bell lab). IC was invented in 1958 (Fair Child Semiconductors) By Texas Instruments J Kilby. The first microprocessor was invented by INTEL(INTegrated ELectronics). Size of the microprocessor - 4 bit NameYear of InventionClock speedNumber of trans
    5 min read

    8085 Microprocessor

    Architecture of 8085 microprocessor
    A microprocessor is fabricated on a single integrated circuit (IC) or chip that is used as a central processing unit (CPU).The 8085 microprocessor is an 8-bit microprocessor that was developed by Intel in the mid-1970s. It was widely used in the early days of personal computing and was a popular cho
    11 min read
    Pin diagram of 8085 microprocessor
    The 8085 microprocessor is a popular 8-bit microprocessor developed by Intel. It has 40 pins, each with a specific function for interfacing with memory, input/output devices, and other components.Pin diagram of 8085 microprocessor is shown below: Key Pin Descriptions1. Address Bus and Data BusAddres
    5 min read
    Registers of 8085 microprocessor
    Introduction : A microprocessor is a multipurpose, programmable, clock-driven, register-based electronic device that reads binary instructions from a storage device called memory, accepts binary data as input and processes data according to those instructions and provide results as output. A 8085 mi
    8 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences