Scattering of Light and Tyndall Effect
Last Updated : 21 Jul, 2021
Tyndall effect, also known as the Tyndall phenomenon, is the scattering of a light beam by a medium containing tiny suspended particles—for example, smoke or dust in a room—which makes a light beam entering a window visible. Short-wavelength blue light is dispersed more strongly than long-wavelength red light, similar to Rayleigh scattering. Let's first understand the concept of scattering.
Scattering of light
Scattering is the mechanism through which light is transmitted in all directions when it strikes a particle with a larger diameter.
The source of light may be explored completely. When light moves from one medium to another, such as air or a glass of water, a portion of the light is absorbed by the medium's particles, followed by subsequent radiation in a specific direction. Scattering of light is the term for this phenomenon. The intensity of scattered light is determined by particle size and wavelength.
Because of the waviness of the line and its interaction with a particle, shorter wavelengths and high frequencies scatter more. The more wavy a line is, the more likely it is to intersect with a particle. Longer wavelengths, on the other hand, have a lower frequency, are straighter, and have a lower likelihood of colliding with the particle, therefore the chances are lower.
Rayleigh's Law of Scattering
It states that the probability for scattering will give a high rise for a shorter wavelength, and it is inversely proportional to the fourth power of the wavelength of radiation.
Let p be considered as the amount of dispersed light and λ is the wavelength
p ∝ 1λ4
Therefore, light scattering decreases as wavelength increases. When some particles are more effective at scattering a specific wavelength of light, this is known as Rayleigh scattering. Because air molecules, such as oxygen and nitrogen, are tiny, they are more efficient at scattering shorter wavelengths of light (blue and violet).
Tyndall Effect
Smoke, water droplets, dust, and other minute particles make up the earth's atmosphere. The path traveled by a ray of light when it encounters these small particles becomes apparent. These particles continuously reflect light, which then reaches us. The Tyndall effect is the phenomenon of light scattering by particles. The size of the scattering particles determines the color of the scattered light.
Tyndall effect refers to the scattering of light by particles in its path. When sunlight penetrates through the canopy of a thick forest, the Tyndall effect is also visible.
Tyndall found that when white light with seven colors is transmitted through a transparent liquid containing tiny suspended particles, the blue color of white light with the shorter wavelength is dispersed considerably more than the red color with the longer wavelength.
Thus, when a light beam is transmitted through a colloidal solution in a dark environment, the route of the light is lit when seen through a microscope positioned perpendicular to the direction of light. The Tyndall effect is the name given to this phenomenon.
Causes of Tyndall Effect
- The colloidal particle is bigger than the solute particle in a real solution.
- Colloidal particles absorb energy from incoming light and then disperse some of it off their surfaces.
- Thus, the Tyndall effect is caused by light scattering by colloidal particles, and the colloidal particles may be seen moving as points of light moving against a black backdrop.
Examples of the Tyndall Effect
- The path of light becomes evident when a torch is turned on in a foggy atmosphere. The light scattering in this scenario is caused by water droplets in the fog.
- Opalescent glass has a bluish appearance when viewed from the side. However, orange-colored light emerges when light is shined through the glass.
- We are able to see dust particles when a single ray of light enters a dark room.
- Milk is a colloid that contains globules of fat and protein. When a beam of light is directed at a glass of milk, the light is scattered. This is a great example of the Tyndall effect.
- The Tyndall effect is the phenomenon of light scattering by particles in a colloid or an extremely tiny solution.

Some Daily phenomena based on Tyndall Effect
- Blue Color of the Sky: The blue color of the sky is caused by the dispersion of the blue component of white sunlight by air molecules in the atmosphere. The sunlight is made up of seven different colored lights that are blended together. The size of air molecules and other tiny particles in the atmosphere is smaller than the wavelength of visible light. These scatter light of shorter wavelengths at the blue end more effectively than light of longer wavelengths at the red end. The wavelength of red light is approximately 1.8 times that of blue light. As a result, as sunlight travels through the atmosphere, tiny particles in the air scatter blue (shorter wavelengths) more strongly than red (longer wavelengths). Our eyes are filled with dispersed blue light. Because there is no atmosphere in deep space to scatter sunlight, the sky appears dark and black rather than blue. At those heights, scattering is minimal.
- Red appearance of Sun during Sunset and Sunrise: Before reaching our eyes, light from the Sun near the horizon travels through deeper layers of air and a greater distance in the earth's atmosphere. The light from the Sun overhead goes a shorter distance. As a result, around midday, the Sun looks white because only a little amount of blue and violet light is dispersed. The size of air molecules and other tiny particles in the atmosphere is smaller than the wavelength of visible light. These scatter light of shorter wavelengths at the blue end more effectively than light of longer wavelengths at the red end. When the sun is near the horizon at sunrise and sunset, it has to travel the maximum distance through the atmosphere to reach us. The majority of the shorter wavelength blue-color and shorter wavelengths contained in sunlight are dispersed out throughout its long voyage. As a result, the light that reaches us has longer wavelengths. As a result, the sun appears crimson red.
- Blue color of our Eyes: The primary difference between blue, brown, and black colored irises is the amount of melanin in one of its layers. The layer in a blue iris has relatively lower amounts of melanin in it when compared to a black iris, making it translucent. When light is incident on this translucent layer, it is scattered due to the Tyndall effect. Because blue light has a shorter wavelength than red light, it is more easily dispersed. Unscathed light is absorbed by a deeper layer of the iris. Because the bulk of the dispersed light is blue, these irises get their distinctive blue color.
Sample Problems
Problem 1: What is Tyndall Effect?
Solution:
Smoke, water droplets, dust, and other minute particles make up the earth's atmosphere. The path travelled by a ray of light when it encounters these small particles becomes apparent. These particles continuously reflect light, which then reaches us. The phenomenon of light scattering by particles is known as the Tyndall effect.
Problem 2: Why does the Sky appear clear blue?
Solution:
The sky appears blue because violet, indigo, and blue colours interact with suspended particles when white light flows through the atmosphere. These waves are absorbed, then diffused, and our eyes receive them.
Problem 3: Why the color of Sunrise and Sunset appears to be red?
Solution:
The color of the sun and its surroundings appear crimson at sunset and sunrise. Because the sun is near the horizon at sunset and sunrise, the sunlight must travel a greater distance through the atmosphere. As a result, the particles scatter the majority of the blue light (shorter wavelength). Longer wavelength light (red color) penetrates human eyes. This is why the sun appears to be red.
Problem 4: Why red color is used to make a danger signal or sign?
Solution:
Because red has the longest wavelength, it scatters the most when it hits minuscule particles of fog and smoke (visible spectrum). As a result, we can see the red color vividly even from a great distance.
Problem 5: Why does the Sun appear yellow?
Solution:
The sun appears yellow because violet, indigo, and blue colors are distributed across the upper atmosphere, resulting in yellow light. This light appears yellow as it enters our eyes.
Problem 7: Why does the sky appear dark instead of blue to an astronaut?
Solution:
An astronaut sees the sky as dark rather than blue: There are no particles in space, hence there is no scattering. As a result, the sky appears to be gloomy.
Problem 7: Why does the smoke coming out of the coal-fired chimney appears blue on a misty day?
Solution:
On a misty day, the smoke from a coal-fired chimney appears blue because the microscopic particles of smoke and moisture scatter blue light traveling through it. The smoke appears blue when this blue light reaches human eyes, and the sky appears dark instead of blue to an astronaut. There are no particles in space, hence there is no scattering. As a result, the sky appears to be gloomy.
Problem 8: Why does the driver use orange lights rather than normal white lights on a foggy day?
Solution:
When a driver drives in fog while using white light, the tiny droplets of water scatter a lot of blue light. When this diffused blue light reaches the eyes, it reduces visibility, making driving extremely difficult. Orange light, on the other hand, does not scatter due to its longer wavelength, allowing the driver to see clearly.
Problem 9: How is the Tyndall Effect Responsible for Blue Eye color?
Solution:
The quantity of melanin in one of the layers of the iris is the primary distinction between blue, brown, and black irises. When opposed to a black iris, the layer of a blue iris contains a smaller quantity of melanin, making it translucent. The Tyndall effect scatters light when it is incident on this translucent layer. When opposed to red light, blue light has a shorter wavelength and is hence scattered more. Unscattered light is absorbed by a layer deeper in the iris. Because the majority of the scattered light is blue, these irises take on a distinctive blue hue.
Similar Reads
Physics Notes For Class 10 Physics is a crucial subject for Class 10 students, and it plays a significant role in their overall performance in the CBSE board exams. To help students develop a strong grasp of the subject and perform well in their exams, we provide detailed and easy-to-understand Physics notes. These notes are
6 min read
Chapter 1: Light: Reflection and Refraction
Chapter 2: Human eye and colorful world
Chapter 3: Electricity
Electric CurrentElectricity has become an essential part of our everyday life, changing the way we live and work. In the past, people depended on fire for light, warmth, and cooking. Today, we can easily turn on lights, heat our homes, and charge our devices with just a switch or button. This is all possible becaus
10 min read
Difference Between Electric Potential and Potential DifferenceThe flow of electric charges is known as electricity, and it is responsible for producing electric current. An important word associated with electricity is electric potential. A potential difference is required to create the flow of electrons and hence, produce electricity. Before understanding the
7 min read
Electric CircuitAn electric circuit is a representation of a real circuit that is used to connect different devices. Electric circuits have various components. We need to learn about all these components to understand the electrical circuit and the flow of current in it. Alessandro Volta was the first to come up wi
7 min read
Ohm's LawOhm's Law was given by German physicist Georg Simon Ohm. It states the relationship between current, resistance, and voltage across an electrical circuit. This relationship between current I, voltage V, and resistance R was given by famous German scientist Georg Simon Ohm in 1827. He found conductin
11 min read
Factors affecting ResistanceA conductor has a large number of free electrons. When a potential difference is applied across the ends of a conductor, the free electrons move from one end to the other end of the conductor. When electrons drift or move, they collide with the atoms (ions) of the conductor. These collisions oppose
10 min read
Combination of ResistorsThe flow of charged particles is referred to as electrical current. In current electricity, the charge flow would be continuous. A current of electricity travels from a higher to a lower electric potential. A circuit consisting of a closed-loop of conducting material is required for current to flow.
12 min read
Heating Effect of Electric CurrentHeating Effect of Electric Current is a phenomenon that is generally used in our daily life. The electric kettle, toaster, heater, and other appliances are utilized as alternates for traditional cooking and laundry methods. Electric bulbs, which are an alternative to conventional lighting, utilize t
11 min read
Commercial Unit of Electrical EnergyThe ability and requirement for the body to conduct labour are referred to as Energy. Energy may be found in a variety of places and in many forms. We've noticed that on food packages and ready-to-cook foods, the amount of energy provided is always stated; as energy is defined as the ability to perf
7 min read
Chapter 4: Magnetic Effects of Electric Current
Magnetic FieldMagnetic Fields is the region around a magnet in which it exerts a force on other magnetic material. The magnetic field of the earth protects us from harmful solar radiation as well as the production of electricity for homes is also an application of the Magnetic Field. Thus everybody should know ab
13 min read
Earth's Magnetic Field - Definition, Causes, ComponentsIf you've ever used a compass (either a classic mechanical one or one incorporated into your smartphone), you'll know that it always points north. If you hang a refrigerator magnet from the ceiling, it will also point north. This implies that the ground beneath your feet generates a magnetic field a
7 min read
Magnetic Field due to Current carrying ConductorMagnetic field is considered a region where the force of magnetism is present. This magnetic force is generally created by a moving charge or magnetic substance. H. C. Oersted made the discovery that a current-carrying conductor creates a magnetic influence all around it in the early years of the 19
6 min read
Magnetic Field due to Current in Straight WireAll the magnetic fields that are known are due to current charges (or moving charges). A current-carrying wire produces a magnetic field because inside the conductor charges are moving. This can also be verified by a simple experiment of keeping a magnetic compass near any current-carrying wire. The
6 min read
Magnetic Field Due to Solenoid and ToroidA charge is surrounded by an electric field when it is sufficiently sluggish and sits idle. This would make sense to you because it is an electric charge. However, when that charge becomes excited and starts racing about, it generates a magnetic field. Doesn't this strike you as strange? You aren't
8 min read
Magnetic Force on a Current carrying WireWhen a charge is moving under the influence of a magnetic field. It experiences forces, which are perpendicular to its movement. This property of charge is exploited in a lot of fields, for example, this phenomenon is used in the making of motors which in turn are useful for producing mechanical for
5 min read
Permanent Magnets and ElectromagnetsThe magnetic field and strength are the main differences between permanent magnets and electromagnets. A wire-wound coil creates the magnetic field in an Electromagnet, whereas the magnetic field of a Permanent (Bar) Magnet cannot be altered. The strength of a Permanent Magnet is determined by the m
7 min read
Electric MotorAn electric motor used to generate mechanical power in the form of rotation. Letâs look at an example: What is the purpose of the electric fan in your home? It starts rotating when the switch is turned on and starts blowing air by rotating its blades. So what would be the answer if someone asked abo
8 min read
Electromagnetic InductionElectromagnetic Induction, often known as induction, is a process in which a conductor is placed in a certain position and the magnetic field varies or remains stationary as the conductor moves. A voltage or EMF (Electromotive Force) is created across the electrical conductor as a result of this. Mi
8 min read
Chapter 5: Sources of Energy
Conventional Energy SourcesConventional sources of Energy or Non-renewable energy sources are finite resources that will deplete over time. Non-renewable energy is defined as energy that does not regenerate itself at a sufficient pace to allow for long-term economic extraction on human timescales. Coal, crude oil, natural gas
10 min read
Fossil FuelsThe primary source of energy is derived from natural resources obtained from the Earth. What kind of fuel does your vehicle use? These are classified as natural resources since they are entirely hydrocarbon-based, thus the name fossil fuels. Let us learn about the significance of these nonrenewable
10 min read
BiomassCow dung and agricultural waste have been used as fuel to cook food in many villages since ancient times. However, it is not an effective source of energy to use as a fuel since its efficiency is extremely poor, which means that the energy generated by them is extremely low and generates a lot of sm
8 min read
Hydroelectric PowerA source of energy can consistently provide enough usable energy over a lengthy period of time. A good energy source should be: Easy transportation: coal, petrol, diesel, and LPG, for example, must be transported from the point of production to the point of consumption.Convenient and safe to use: nu
7 min read
Ocean EnergyA source of energy is one that can consistently provide enough usable energy for a long period of time. Energy can be categorized as Renewable sources of energy and Non-Renewable sources of energy or classified as Conventional sources of energy and Non- conventional sources of energy. Energy is the
8 min read
What is Nuclear Energy?The nucleus of an atom is very small. But it is a matter of fact that a single tiny nucleus of an atom will produce a massive amount of nuclear energy? What is the source of this electricity, and how does this is obtained? Let's take a closer look at nuclear technology and how it differs from other
12 min read