Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
    • Practice Coding Problems
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Physics Class-12th Notes
  • Physics Formulas
  • Physics Symbol
  • Application of Physics
  • Class 8 Science
  • Class 9 Science
  • Class 10 Science
  • Class 11 Science
  • Class 12 Science
  • Class 8 Study Material
  • Class 9 Study Material
  • Class 10 Study Material
  • Class 11 Study Material
  • Class 12 Study Material
Open In App
Next Article:
Transformer
Next article icon

LC Oscillations

Last Updated : 26 Oct, 2021
Comments
Improve
Suggest changes
Like Article
Like
Report

The Difference between the Direct and Alternating current is that the direct current (DC), travels only in one direction while the alternating current (AC) is an electric current that alternates direction on occasion and alters its amplitude continuously over time. Alternating current is the type of electricity supplied to businesses and residences, as well as the type of energy utilised by consumers when they plug in kitchen appliances, televisions, fans, and electric lamps to a wall socket. 

However, a flashlight's battery cell is a typical source of DC power. When modifying current or voltage, the acronyms AC and DC are frequently used to denote merely alternating and direct. In most electric power circuits, the most common waveform of alternating current is a sine wave, whose positive half-period correlates to the positive current direction and vice versa. Different waveforms, such as triangle waves or square waves, are utilised in particular applications, such as guitar amplifiers. Alternating current also includes audio and radio signals sent through electrical cables. Information like sound (audio) or pictures (video) is occasionally conveyed via modulation of an AC carrier signal in these forms of alternating current. The frequency of these currents is usually higher than that of power transmission currents.

What are LC Oscillations?

The LC Oscillator employs a tank circuit (comprising an inductor and a capacitor) to provide the necessary positive feedback to keep oscillations in a circuit going. 

A charged capacitor (C) is linked to an uncharged inductor in this circuit, as the name indicates (L). 

LC Oscillator

A fully charged capacitor and a totally de-energized inductor will be used in this circuit. This inductor's resistance must be as low as feasible (ideally zero).

Consider this: if a charged capacitor is linked to a resistor, the resistance will consume the energy from the capacitor, and the current flow will ultimately come to a standstill.

However, in this situation, the capacitor (which stores electrical energy) is linked to a low-resistance inductor (which stores magnetic energy). As a result, as the inductor begins to absorb energy from the capacitor, it becomes charged, and its energy rises, causing the capacitor to discharge. When the inductor is completely charged, the capacitor loses all of its energy, and the inductor begins to charge the capacitor using the energy it has stored. The energy is transferred from the capacitor to the inductor and then back to the capacitor. LC Oscillations are the continual flow of energy from one device to another.

Equations of Energy Stored in a Capacitor and an Inductor

  • Energy Stored in a Capacitor

The capacitor is an electric charge and energy storage device. The voltage difference (V) applied between the ends of a capacitor is exactly proportional to the quantity of charge stored (q). As a result, the charge stored in a capacitor has the following equation:

q = CV

The capacitance of the capacitor is denoted by C.

The change in electric potential energy is now calculated as follows:

dU = q (dV)

dU = CV dV

Integrating the equation as,

∫U0 dU = ∫V0 CVdV 

U = 1/2 CV2 = 1/2 qV = q2 / 2C

These are the formulas for calculating the amount of energy stored in a capacitor.

  • Energy Stored in an Inductor

The inductor is a device that stores energy in a magnetic field when a current is passed through it. The change in electric current with respect to time is exactly proportional to the potential difference (V) across the ends of an inductor (di/dt).

V = –L di/dt

The inductor's inductance is denoted by the letter L. The potential energy stored in the inductor will now shift as follows:

dU = V i(dt)

dU = L i(di)

Integrating the equation as, 

∫U0 dU = ∫i0 L idi

U = 1/2 L i2

This is the formula for calculating the energy stored in an inductor.

Working of an LC Oscillator

When a fully powered capacitor is linked to a de-energized inductor, the capacitor receives all of the circuit's energy, while the inductor receives none. Let's call the energy stored in the capacitor (electrical energy) UE and the magnetic energy stored in the inductor (UB).

  • Current flows from the capacitor to the inductor, energising the inductor and discharging the capacitor. The inductor's energy begins to rise, while the capacitor's energy begins to fall. The circuit's present state is depicted in this diagram. The bars below the circuit diagram show that half of the energy stored in an inductor is equivalent to half of the energy stored in a capacitor at this point in time, indicating that the capacitor has transferred half of its energy to the inductor.
  • All of the capacitor's energy will now be transmitted to the inductor as soon as the capacitor is entirely drained. As a result, a significant amount of electric energy is transformed to magnetic energy.
  • Because the capacitor has been fully drained and the inductor has been fully energised, the inductor will now begin to charge the capacitor in the same direction as the current. The present state of the circuit is depicted in the fourth diagram. As a result, half of the inductor's energy has been transferred to the capacitor.
  • Finally, the capacitor will be fully charged again, and the inductor will be fully activated. The capacitor, on the other hand, will now have its polarity reversed. As a result, if the current in the circuit starts flowing again from the capacitor, it will flow in the opposite direction. We may say that the first half of the AC cycle has ended and the second half has begun since the current in the circuit now has an opposing flow of current.

As a result, both the capacitor and the inductor will be fully charged twice during the cycle.

Differential Equation of LC Oscillations

We may claim that the total potential differences across capacitor and inductor in the tank circuit will be zero if Kirchhoff's Voltage Law is applied.

VL + VC = 0

–L di / dt + q / C=0

But, i = −dq / dt, since the charge on the capacitor diminishes as time passes:

L d2q / dt2 + q/C = 0

⇒ d2q / dt2 = –q /LC

The differential equation for LC Oscillations is this equation. The angular frequency of LC oscillations may be written as follows using this equation:

ω = 1 / √LC

Therefore, its frequency will be:

f = 1 / 2π√LC

The LC Oscillation differential equation will have the following solution:

q = qm sin (ωt+ϕ)

The maximum charge on the capacitor is denoted by qm. We derive the equation of current by differentiating this equation with regard to time.

i = dq/dt

i = d/dt [(qm sin(ωt+ϕ))]

⇒ i= qmωcos(ωt+ϕ)

However, the current flowing through the circuit will be zero at time t=0. Hence,

cos(ϕ) = 0

⇒ ϕ = π/2

Thus, the equation of charge will be;

q = qm sin(ωt+π/2)

⇒ q=qm cos(ωt)

Total Energy of LC Oscillations

In LC Oscillations, the charge equation is as follows:

q = qm cos(ωt)

We derive the present equation by differentiating this equation:

i = dq/dt

⇒ i = –qm ωsin(ωt)

The formula for calculating the energy stored in a capacitor is:

UE = q2/2C

Substituting the equation for a given time interval t;

UE = qm2/2C × (ωt)

The formula for calculating the energy stored in an inductor is:

UB = 1/2 L i2

Substituting the capacitor's equation for the same amount of time;

UB = 1/2 L qm2 ω2 (ωt)

Since the angular frequency, ω=1/ √LC

⇒ UB = qm2/2C × (ωt)

As a result, the LC Oscillations' total energy will be;

U = UE + UC

U = qm2/2C × (ωt)+qm2/2C × (ωt)

⇒ U = qm2 / 2C

Applications of LC Oscillations

Many electrical equipments, such as transmitters, radio devices, filters, frequency mixers, TVs, RF generators, and so on, employ LC oscillations.

  1. To convert a DC signal to an AC signal, this device is used.
  2. This resonance circuit may be used to boost voltage.
  3. It's used to create a signal with a specified frequency by adjusting the inductance and capacitance levels.
  4. They are suitable for induction heating.

Sample Questions 

Question 1:  What happens in LC Oscillations?

Answer:

LC Oscillations are caused by the continuous flow of energy from the capacitor (C) to the inductor (L). The capacitor is completely charged at first, then discharged, then charged again, and so on.

Question 2: Why do LC circuits oscillate?

Answer:

When a charged capacitor is connected to a de-energized inductor, the capacitor will begin charging the inductor while discharging itself, and the inductor will do the same when fully energised and the capacitor is fully discharged. As a result, the short current oscillation occurs here.

Question 3:  What is the use of an LC oscillator?

Answer:

The majority of the time, LC oscillators are employed to create a certain frequency.

Question 4: What is the frequency of LC oscillation?

Answer:

The frequency of LC oscillation is calculated as follows: 

f = 1/2π √LC

As a result, it is dependent on the capacitance (C) and inductance (L) values.

Question 5: Why are LC oscillations non-realistic?

Answer:

Because the inductor and capacitor are obviously non-ideal, they will have some resistance in them in real life. As a result, some energy is wasted in the resistance with each cycle of LC oscillation, and it can't carry on indefinitely.

Problem 6: A 27 mH inductor is linked to a charged 30μF capacitor. What is the angular frequency of the circuit's free oscillations?

Solution:

Free oscillations' angular frequency.

The resonance frequency is calculated as follows:

ωr = 1/ √LC

     ​= 1/ √27 × 30 × 10-9

     =1.11 × 103 rad/s.


Next Article
Transformer

A

amanarora3dec
Improve
Article Tags :
  • School Learning
  • Physics
  • Class 12
  • Physics-Class-12

Similar Reads

    CBSE Class 12 Physics Notes 2023-24
    CBSE Class 12 Physics Notes are an essential part of the study material for any student wanting to pursue a career in engineering or a related field. Physics is the subject that helps us understand our surroundings using simple and complex concepts combined. Class 12 physics introduces us to a lot o
    10 min read

    Chapter 1: Electric Charges and Fields

    Unit of Electric Charge
    Electric charge is the fundamental property of matter. Various properties are explained by the electric charges. So it is very important to note the unit of electric charge and other parameters of the electric charge. In this article, we will learn about electric charge its definition, and the units
    5 min read
    Conductors and Insulators
    When humans remove synthetic clothing or sweater, especially in dry weather, he or she often sees a spark or hear a crackling sound. With females' clothing like a polyester saree, this is essentially observed. Another example is Lightning a common form of electric discharge that seen in the sky duri
    9 min read
    Charging by Induction
    Charging by Induction- A spark or crackling sound emerges when our synthetic garments or sweaters are removed from our bodies, especially in dry weather. This is virtually unavoidable with feminine apparel, such as polyester sarees. Lightning, in the sky during thunderstorms, is another case of elec
    13 min read
    Basic Properties of Electric Charge
    Electric Charges are fundamental in the universe. The presence of electric charges are not only seen in the field of science but also in the daily lives of human beings. For instance, rubbing dry hair with a ruler ends up making some hair strands stand up and this happens because electric charges ar
    4 min read
    Coulomb's Law
    Coulomb’s Law is defined as a mathematical concept that defines the electric force between charged objects. Columb's Law states that the force between any two charged particles is directly proportional to the product of the charge but is inversely proportional to the square of the distance between t
    9 min read
    Electric Charge and Electric Field
    Electric Field is the region around a charge in which another charge experiences an attractive or repulsive force. Electric Field is an important concept in the study of electrostatics which is the branch of physics. Electric Field despite its invisible nature, powers our homes with electricity, tra
    15+ min read
    Electric Field Lines
    Electric field lines are a representation used to visualize the electric field surrounding charged objects. They provide a way to understand the direction and strength of the electric field at different points in space. It helps analyze electric fields in various situations, such as around point cha
    5 min read
    Electric Dipole
    An electric dipole is defined as a pair of equal and opposite electric charges that are separated, by a small distance. An example of an electric dipole includes two atoms separated by small distances. The magnitude of the electric dipole is obtained by taking the product of either of the charge and
    11 min read
    Continuous Charge Distribution
    Electric charge is a fundamental feature of matter that regulates how elementary particles are impacted by an electric or magnetic field. Positive and negative electric charge exists in discrete natural units and cannot be manufactured or destroyed. There are two sorts of electric charges: positive
    7 min read
    Gauss's Law
    Gauss's law is defined as the total flux out of the closed surface is equal to the flux enclosed by the surface divided by the permittivity. The Gauss Law, which analyses electric charge, a surface, and the issue of electric flux, is analyzed. Let us learn more about the law and how it functions so
    15+ min read
    Applications of Gauss's Law
    Gauss's Law states that the total electric flux out of a closed surface equals the charge contained inside the surface divided by the absolute permittivity. The electric flux in an area is defined as the electric field multiplied by the surface area projected in a plane perpendicular to the field. N
    9 min read

    Chapter 2: Electrostatic Potential and Capacitance

    Electric Potential Energy
    Electrical potential energy is the cumulative effect of the position and configuration of a charged object and its neighboring charges. The electric potential energy of a charged object governs its motion in the local electric field.Sometimes electrical potential energy is confused with electric pot
    15+ min read
    Electric Potential Due to a Point Charge
    Electric forces are responsible for almost every chemical reaction within the human body. These chemical reactions occur when the atoms and their charges collide together. In this process, some molecules are formed and some change their shape. Electric forces are experienced by charged bodies when t
    7 min read
    Electric Potential Of A Dipole and System Of Charges
    Electric Potential is defined as the force experienced by a charge inside the electric field of any other charge. mathematically it is defined as the ratio of electric potential energy that is required to take a test charge from infinity to a point inside the electric field of any other charge with
    7 min read
    Equipotential Surfaces
    When an external force acts to do work, moving a body from a point to another against a force like spring force or gravitational force, that work gets collected or stores as the potential energy of the body. When the external force is excluded, the body moves, gaining the kinetic energy and losing a
    9 min read
    Potential Energy of a System of Charges
    When an external force works to accomplish work, such as moving a body from one location to another against a force such as spring force or gravitational force, that work is collected and stored as the body's potential energy. When the external force is removed, the body moves, acquiring kinetic ene
    11 min read
    Potential Energy in an External Field
    When an external force operates to conduct work, such as moving a body from one location to another against a force like spring force or gravitational force, the work is gathered and stored as potential energy in the body. When an external force is removed, the body moves, acquiring kinetic energy a
    11 min read
    Electrostatics of Conductors
    When an external force is used to remove a body from a situation. Point to another in the face of a force like spring or gravitational force That work is stored in the body as potential energy. When the external environment When a force is eliminated, the body moves, gaining and losing kinetic energ
    11 min read
    Dielectrics and Polarisation
    Have you noticed how many of the insulators are made of wood, plastic, or glass? But why is that? When we utilise wood or plastic, why don't we receive electric shocks? Why do you only get severe shocks from metal wires? We'll look at dielectrics, polarisation, the dielectric constant, and more in t
    10 min read
    Capacitance
    Capacitance is defined as the capacity of any material to store electric charge. The substance that stores the electric charge is called a capacitor, i.e. the ability of the capacitor to hold the electric charge is called capacitance. It is denoted with the symbol C and is defined as the ratio of th
    9 min read
    What is a Parallel Plate Capacitor?
    Answer: A Parallel Plate Capacitor is a capacitor with two parallel conducting plates separated by an insulating material and capable of storing electrical charge. Capacitance can be defined in Layman's terms as a physical quantity that indicates the ability of a component or circuit to collect and
    8 min read
    Capacitors in Series and Parallel
    Capacitors are special devices that can hold electric charges for instantaneous release in an electric circuit. We can easily connect various capacitors together as we connected the resistor together. The capacitor can be connected in series or parallel combinations and can be connected as a mix of
    7 min read
    Energy stored in a Capacitor
    Capacitors are used in almost every electronic device around us. From a fan to a chip, there are lots of capacitors of different sizes around us. Theoretically, the basic function of the capacitor is to store energy. Its common usage includes energy storage, voltage spike protection, and signal filt
    6 min read

    Chapter 3: Current Electricity

    Electric Current in Conductors
    Electric current in conductors is the movement of electric charge through a substance, usually a metallic wire or other conductor. Electric current is the rate at which an electric charge flows past a certain point in a conductor, and it is measured in amperes. When a potential difference (voltage)
    8 min read
    Ohm's Law
    Ohm's Law was given by German physicist Georg Simon Ohm. It states the relationship between current, resistance, and voltage across an electrical circuit. This relationship between current I, voltage V, and resistance R was given by famous German scientist Georg Simon Ohm in 1827. He found conductin
    11 min read
    Drift Velocity
    Drift Velocity as the name suggests refers to the slow movement of electrons in the conductor when an Electromotive force(emf) is introduced. Electrons do not move in a straight line in the conductor, but they move randomly in the conductor colliding with the other electrons and atoms exchanging ene
    12 min read
    Ohm's Law - Definition, Formula, Applications, Limitations
    According to Ohm's law, the voltage or potential difference between two locations is proportional to the current of electricity flowing through the resistance, and the resistance of the circuit is proportional to the current or electricity travelling through the resistance. V=IR is the formula for O
    5 min read
    Temperature Dependence of Resistance
    Devices such as batteries, cells, etc. are essential for maintaining a potential difference across the circuit and are referred to as voltage sources. When a voltage source is connected across a conductor, it creates an electric field which causes the charges to move and this causes current. The val
    5 min read
    Electrical Energy and Power
    Electric energy is the most important form of energy and is widely used in almost all the electrical devices around us. These devices have a rating written on them. That rating is expressed in Watts and intuitively explains the amount of electricity the device will consume. Bigger devices like AC, r
    9 min read
    Resistors in Series and Parallel Combinations
    Resistors are devices that obstruct the flow of electric current in the circuit. They provide the hindrance to the path of the current which flows in the circuit. Resistors consume the current in any circuit and convert them to other forms of energy as required. Various resistors can be added to the
    9 min read
    Electromotive Force
    Electromotive Force or EMF is the work done by the per unit charge while moving from the positive end to the negative end of the battery. It can also be defined as the energy gain per unit charge while moving from the positive end to the negative end of the battery. The battery or the electric gener
    10 min read
    Combination of Cells in Series and Parallel
    There are many resistances in complex electrical circuits. There are methods to calculate the equivalent resistances in case multiple resistances are connected in series or parallel or sometimes in a combination of series and parallel. In many situations, batteries or different types of voltage sour
    6 min read
    Meter Bridge - Explanation, Construction, Working, Sample Problems
    An electric flow is a flood of charged particles, like electrons or particles, traveling through an electrical conveyor or space. It is estimated as the net pace of stream of electric charge through a surface or into a control volume. The moving particles are called charge transporters, which might
    7 min read
    Potentiometer - Definition, Working Principle, Types
    An electric flow is a surge of charged particles, like electrons or particles, travelling through an electrical channel or space. It is estimated as the net pace of stream of electric charge through a surface or into a control volume. The moving particles are called charge transporters, which might
    15 min read

    Chapter 4: Moving Charges and Magnetism

    Motion of a Charged Particle in a Magnetic Field
    This has been already learned about the interaction of electric and magnetic fields, as well as the motion of charged particles in the presence of both electric and magnetic fields. We have also deduced the relationship of the force acting on the charged particle, which is given by the Lorentz force
    9 min read
    Biot-Savart Law
    The Biot-Savart equation expresses the magnetic field created by a current-carrying wire. This conductor or wire is represented as a vector quantity called the current element. Lets take a look at the law and formula of biot-savart law in detail, Biot-Savart Law The magnitude of magnetic induction a
    7 min read
    Ampere's Circuital Law and Problems on It
    André-Marie Ampere, a French physicist, proposed Ampere's Circuital Law. Ampere was born in Lyon, France, on January 20, 1775. His father educated him at home, and he showed an affinity for mathematics at a young age. Ampere was a mathematician and physicist best known for his work on electrodynamic
    5 min read
    Magnetic Field Due to Solenoid and Toroid
    A charge is surrounded by an electric field when it is sufficiently sluggish and sits idle. This would make sense to you because it is an electric charge. However, when that charge becomes excited and starts racing about, it generates a magnetic field. Doesn't this strike you as strange? You aren't
    8 min read
    Force between Two Parallel Current Carrying Conductors
    Moving charges produce an electric field and the rate of flow of charge is known as current. This is the basic concept in Electrostatics. The magnetic effect of electric current is the other important phenomenon related to moving electric charges. Magnetism is generated due to the flow of current. M
    8 min read
    Current Loop as a Magnetic Dipole
    When a charge move it generates an electric field and the rate of flow of charge is the current in the electric field. This is the basic concept in Electrostatics. The magnetic effect of electric current is the other important concept related to moving electric charges. Magnetism is generated due to
    11 min read
    Moving Coil Galvanometer
    Hans Christian Oersted discovered in 1820 that a current-carrying conducting wire produces a magnetic field around it. His findings from his experiments are as follows: The magnetic compass needle is aligned tangent to an imaginary circle centered on the current-carrying cable.When the current is re
    10 min read

    Chapter 5: Magnetism and Matter

    Magnetism
    Magnetism in Physics is defined as the property of the material that is responsible for the magnetic behaviour of the magnets. Magnetism is defined as the force that is produced by the moving charge and it attracts or repels other magnets and moving charge. Initially, magnetism is defined as the pro
    11 min read
    Earth's Magnetic Field - Definition, Causes, Components
    If you've ever used a compass (either a classic mechanical one or one incorporated into your smartphone), you'll know that it always points north. If you hang a refrigerator magnet from the ceiling, it will also point north. This implies that the ground beneath your feet generates a magnetic field a
    7 min read
    Magnetization and Magnetic Intensity
    We've all had fun with magnets as kids. Some of us are now even playing with them! What makes them magnetic though? Why aren't there magnetic fields in all materials and substances? Have you ever given it any thought? The subjects of magnetization and magnetic intensity will be covered in this chapt
    6 min read
    Diamagnetic Materials - Definition, Properties, Applications
    The genesis of magnetism is due to the spin motion of electrons and their interactions with one another. Describing how materials respond to magnetism is the greatest approach to present different sorts of magnetic materials. You might be surprised to learn that all matter is magnetic. The main dist
    6 min read
    Permanent Magnets and Electromagnets
    The magnetic field and strength are the main differences between permanent magnets and electromagnets. A wire-wound coil creates the magnetic field in an Electromagnet, whereas the magnetic field of a Permanent (Bar) Magnet cannot be altered. The strength of a Permanent Magnet is determined by the m
    7 min read

    Chapter 6: Electromagnetic Induction

    Experiments of Faraday and Henry
    For a long time, electricity and magnetism were thought to be separate and unrelated phenomena. Experiments on electric current by Oersted, Ampere and a few others in the early decades of the nineteenth century established the fact that electricity and magnetism are inter-related. They discovered th
    5 min read
    Faraday’s Laws of Electromagnetic Induction
    Faraday's Law of Electromagnetic Induction is the basic law of electromagnetism that is used to explain the working of various equipment that includes an electric motor, electric generator, etc. Faraday's law was given by an English scientist Michael Faraday in 1831. According to Faraday's Law of El
    10 min read
    Lenz's Law
    Lenz law was given by the German scientist Emil Lenz in 1834 this law is based on the principle of conservation of energy and is in accordance with Newton's third law. Lenz law is used to give the direction of induced current in the circuit. In this article, let's learn about Lenz law its formula, e
    7 min read
    Motional Electromotive Force
    The process of induction occurs when a change in magnetic flux causes an emf to oppose that change. One of the main reasons for the induction process in motion. We can say, for example, that a magnet moving toward a coil generates an emf, and that a coil moving toward a magnet creates a comparable e
    14 min read
    Energy Consideration
    Force is the influence that causes an object to move or change its motion. In our daily activities, we apply force to our bodies. To generate this force, our body requires energy. Therefore, there is a connection between force and energy, and this connection is explained through the concept of energ
    9 min read
    What are Eddy Currents?
    Eddy currents are whirling currents produced in a conductor by a changing magnetic field. They are a fundamental phenomenon in electromagnetism, resulting from Faraday's law of electromagnetic induction, which states that a changing magnetic field generates an electromotive force (EMF) and, eventual
    9 min read
    Inductance - Definition, Derivation, Types, Examples
    Magnetism has a mystical quality about it. Its capacity to change metals like iron, cobalt, and nickel when touched piques children's interest. Repulsion and attraction between the magnetic poles by observing the shape of the magnetic field created by the iron filling surrounding the bar magnet will
    13 min read
    AC Generator - Principle, Construction, Working, Applications
    A changing magnetic flux produces a voltage or current in a conductor, which is known as electromagnetic induction. It can happen when a solenoid's magnetic flux is changed by moving a magnet. There will be no generated voltage (electrostatic potential difference) across an electrical wire if the ma
    7 min read

    Chapter 7: Alternating Current

    AC Voltage Applied to a Resistor
    Alternating Currents are used almost as a standard by electricity distribution companies. In India, 50 Hz Alternating Current is used for domestic and industrial power supply. Many of our devices are in fact nothing but resistances. These resistances cause some voltage drop but since the voltage thi
    5 min read
    Phasors | Definition, Examples & Diagram
    Phasor analysis is used to determine the steady-state response to a linear circuit functioning on sinusoidal sources with frequency (f). It is very common. For example, one can use phasor analysis to differentiate the frequency response of a circuit by performing phasor analysis over a range of freq
    10 min read
    AC Voltage Applied to an Inductor
    Alternating Currents and Voltages vary and change their directions with time. They are widely used in modern-day devices and electrical systems because of their numerous advantages. Circuits in everyday life consist of resistances, capacitors, and inductances. Inductors are devices that store energy
    5 min read
    AC Voltage Applied to a Capacitor
    Alternating Currents and Voltages vary and change their directions with time. They are widely used in modern-day devices and electrical systems because of their numerous advantages. Circuits in everyday life consist of resistances, capacitors, and inductance. Capacitors are the devices that accumula
    6 min read
    Series LCR Circuits
    In contrast to direct current (DC), which travels solely in one direction, Alternating Current (AC) is an electric current that occasionally reverses direction and alters its magnitude constantly over time. Alternating current is the type of electricity that is delivered to companies and homes, and
    8 min read
    Power in AC Circuit
    Alternating Current and Voltages change their magnitude and direction with time. This changes the way calculations for power and other quantities are done in circuits. Furthermore, with the introduction of capacitors and inductances, many other effects come into play which alters the power calculati
    6 min read
    LC Oscillations
    The Difference between the Direct and Alternating current is that the direct current (DC), travels only in one direction while the alternating current (AC) is an electric current that alternates direction on occasion and alters its amplitude continuously over time. Alternating current is the type of
    9 min read
    Transformer
    A transformer is the simplest device that is used to transfer electrical energy from one alternating-current circuit to another circuit or multiple circuits, through the process of electromagnetic induction. A transformer works on the principle of electromagnetic induction to step up or step down th
    15+ min read

    Chapter 8: Electromagnetic Waves

    Displacement Current
    Displacement current is the current that is produced by the rate of change of the electric displacement field. It differs from the normal current that is produced by the motion of the electric charge. Displacement current is the quantity explained in Maxwell's Equation. It is measured in Ampere. Dis
    12 min read
    Electromagnetic Waves
    A wave is a propagating dynamic disturbance (change from equilibrium) of one or more quantities that is commonly described by a wave equation in physics, mathematics, and related subjects. Electromagnetic waves are a mix of electric and magnetic field waves produced by moving charges. The origin of
    11 min read
    Electromagnetic Spectrum
    Electromagnetic Spectrum: The sun is our planet's principal source of energy, and its energy travels in the form of electromagnetic radiation. Electromagnetic energy moves across space at the speed of light in the form of waves of electric and magnetic fields with a range of frequencies or wavelengt
    11 min read

    Chapter 9: Ray Optics and Optical Instruments

    Spherical Mirrors
    Spherical mirrors are generally constructed from glass. A spherical surface is a part cut from a hollow sphere. This curved surface of the glass has a silver coating on one side and a polished surface on the other, where the reflection of light takes place. The term "convex mirror" refers to a mirro
    11 min read
    Refraction of Light
    Refraction is an important term used in the Ray Optics branch of Physics. Refraction of light is defined as the change in direction or the bending of a wave passing from one medium to another due to the change in speed of the wave. Some natural phenomena occurring in nature where refraction of light
    11 min read
    Total Internal Reflection
    In Physics, total internal reflection is the complete reflection of a light ray within the medium (air, water glass, etc). For example, the total internal reflection of rays of light takes place in a Diamond. Since Dimond has multiple reflecting surfaces through which the Total internal reflection t
    8 min read
    Image formation by Spherical Lenses
    You might have used a microscope in the science lab for magnifying the micro-size object. It basically magnifies tiny objects and we can see the enlarged image of that object. Telescopes are used by scientists to the planets and stars which are far- far away from the earth. You might see the spectac
    8 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences