Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • DSA
  • Interview Problems on Tree
  • Practice Tree
  • MCQs on Tree
  • Tutorial on Tree
  • Types of Trees
  • Basic operations
  • Tree Traversal
  • Binary Tree
  • Complete Binary Tree
  • Ternary Tree
  • Binary Search Tree
  • Red-Black Tree
  • AVL Tree
  • Full Binary Tree
  • B-Tree
  • Advantages & Disadvantages
Open In App
Next Article:
Segment tree | Efficient implementation
Next article icon

Persistent Segment Tree | Set 1 (Introduction)

Last Updated : 27 Jan, 2023
Comments
Improve
Suggest changes
Like Article
Like
Report
Prerequisite : Segment Tree                Persistency in Data Structure

Segment Tree is itself a great data structure that comes into play in many cases. In this post we will introduce the concept of Persistency in this data structure. Persistency, simply means to retain the changes. But obviously, retaining the changes cause extra memory consumption and hence affect the Time Complexity.

Our aim is to apply persistency in segment tree and also to ensure that it does not take more than O(log n) time and space for each change.

Let’s think in terms of versions i.e. for each change in our segment tree we create a new version of it. 
We will consider our initial version to be Version-0. Now, as we do any update in the segment tree we will create a new version for it and in similar fashion track the record for all versions.

But creating the whole tree for every version will take O(n log n) extra space and O(n log n) time. So, this idea runs out of time and memory for large number of versions.

Let’s exploit the fact that for each new update(say point update for simplicity) in segment tree, At max logn nodes will be modified. So, our new version will only contain these log n new nodes and rest nodes will be the same as previous version. Therefore, it is quite clear that for each new version we only need to create these log n new nodes whereas the rest of nodes can be shared from the previous version.

Consider the below figure for better visualization(click on the image for better view) :- 

persistent segtree

Consider the segment tree with green nodes . Lets call this segment tree as version-0. The left child for each node is connected with solid red edge where as the right child for each node is connected with solid purple edge. Clearly, this segment tree consists of 15 nodes.

Now consider we need to make change in the leaf node 13 of version-0. 
So, the affected nodes will be – node 13 , node 6 , node 3 , node 1. 
Therefore, for the new version (Version-1) we need to create only these 4 new nodes.

Now, lets construct version-1 for this change in segment tree. We need a new node 1 as it is affected by change done in node 13. So , we will first create a new node 1′(yellow color) . The left child for node 1′ will be the same for left child for node 1 in version-0. So, we connect the left child of node 1′ with node 2 of version-0(red dashed line in figure). Let’s now examine the right child for node 1′ in version-1. We need to create a new node as it is affected . So we create a new node called node 3′ and make it the right child for node 1′(solid purple edge connection).

In the similar fashion we will now examine for node 3′. The left child is affected , So we create a new node called node 6′ and connect it with solid red edge with node 3′ , where as the right child for node 3′ will be the same as right child of node 3 in version-0. So, we will make the right child of node 3 in version-0 as the right child of node 3′ in version-1(see the purple dash edge.) 

Same procedure is done for node 6′ and we see that the left child of node 6′ will be the left child of node 6 in version-0(red dashed connection) and right child is newly created node called node 13′(solid purple dashed edge).
Each yellow color node is a newly created node and dashed edges are the inter-connection between the different versions of the segment tree.

Now, the Question arises : How to keep track of all the versions? 
– We only need to keep track the first root node for all the versions and this will serve the purpose to track all the newly created nodes in the different versions. For this purpose we can maintain an array of pointers to the first node of segment trees for all versions.

Let’s consider a very basic problem to see how to implement persistence in segment tree 

Problem : Given an array A[] and different point update operations.Considering  each point operation to create a new version of the array. We need to answer  the queries of type Q v l r : output the sum of elements in range l to r just after the v-th update.

We will create all the versions of the segment tree and keep track of their root node.Then for each range sum query we will pass the required version’s root node in our query function and output the required sum.

Below is the implementation for the above problem:- 

Implementation:

C++




// C++ program to implement persistent segment
// tree.
#include "bits/stdc++.h"
using namespace std;
 
#define MAXN 100
 
/* data type for individual
 * node in the segment tree */
struct node
{
    // stores sum of the elements in node
    int val;
 
    // pointer to left and right children
    node* left, *right;
 
    // required constructors........
    node() {}
    node(node* l, node* r, int v)
    {
        left = l;
        right = r;
        val = v;
    }
};
 
// input array
int arr[MAXN];
 
// root pointers for all versions
node* version[MAXN];
 
// Constructs Version-0
// Time Complexity : O(nlogn)
void build(node* n,int low,int high)
{
    if (low==high)
    {
        n->val = arr[low];
        return;
    }
    int mid = (low+high) / 2;
    n->left = new node(NULL, NULL, 0);
    n->right = new node(NULL, NULL, 0);
    build(n->left, low, mid);
    build(n->right, mid+1, high);
    n->val = n->left->val + n->right->val;
}
 
/**
 * Upgrades to new Version
 * @param prev : points to node of previous version
 * @param cur  : points to node of current version
 * Time Complexity : O(logn)
 * Space Complexity : O(logn)  */
void upgrade(node* prev, node* cur, int low, int high,
                                   int idx, int value)
{
    if (idx > high or idx < low or low > high)
        return;
 
    if (low == high)
    {
        // modification in new version
        cur->val = value;
        return;
    }
    int mid = (low+high) / 2;
    if (idx <= mid)
    {
        // link to right child of previous version
        cur->right = prev->right;
 
        // create new node in current version
        cur->left = new node(NULL, NULL, 0);
 
        upgrade(prev->left,cur->left, low, mid, idx, value);
    }
    else
    {
        // link to left child of previous version
        cur->left = prev->left;
 
        // create new node for current version
        cur->right = new node(NULL, NULL, 0);
 
        upgrade(prev->right, cur->right, mid+1, high, idx, value);
    }
 
    // calculating data for current version
    // by combining previous version and current
    // modification
    cur->val = cur->left->val + cur->right->val;
}
 
int query(node* n, int low, int high, int l, int r)
{
    if (l > high or r < low or low > high)
       return 0;
    if (l <= low and high <= r)
       return n->val;
    int mid = (low+high) / 2;
    int p1 = query(n->left,low,mid,l,r);
    int p2 = query(n->right,mid+1,high,l,r);
    return p1+p2;
}
 
int main(int argc, char const *argv[])
{
    int A[] = {1,2,3,4,5};
    int n = sizeof(A)/sizeof(int);
 
    for (int i=0; i<n; i++)
       arr[i] = A[i];
 
    // creating Version-0
    node* root = new node(NULL, NULL, 0);
    build(root, 0, n-1);
 
    // storing root node for version-0
    version[0] = root;
 
    // upgrading to version-1
    version[1] = new node(NULL, NULL, 0);
    upgrade(version[0], version[1], 0, n-1, 4, 1);
 
    // upgrading to version-2
    version[2] = new node(NULL, NULL, 0);
    upgrade(version[1],version[2], 0, n-1, 2, 10);
 
    cout << "In version 1 , query(0,4) : ";
    cout << query(version[1], 0, n-1, 0, 4) << endl;
 
    cout << "In version 2 , query(3,4) : ";
    cout << query(version[2], 0, n-1, 3, 4) << endl;
 
    cout << "In version 0 , query(0,3) : ";
    cout << query(version[0], 0, n-1, 0, 3) << endl;
    return 0;
}
 
 

Java




// Java program to implement persistent
// segment tree.
class GFG{
     
// Declaring maximum number
static Integer MAXN = 100;
 
// Making Node for tree
static class node
{
     
    // Stores sum of the elements in node
    int val;
 
    // Reference to left and right children
    node left, right;
 
    // Required constructors..
    node() {}
 
    // Node constructor for l,r,v
    node(node l, node r, int v)
    {
        left = l;
        right = r;
        val = v;
    }
}
 
// Input array
static int[] arr = new int[MAXN];
 
// Root pointers for all versions
static node version[] = new node[MAXN];
 
// Constructs Version-0
// Time Complexity : O(nlogn)
static void build(node n, int low, int high)
{
    if (low == high)
    {
        n.val = arr[low];
        return;
    }
     
    int mid = (low + high) / 2;
    n.left = new node(null, null, 0);
    n.right = new node(null, null, 0);
    build(n.left, low, mid);
    build(n.right, mid + 1, high);
    n.val = n.left.val + n.right.val;
}
 
/*  Upgrades to new Version
 * @param prev : points to node of previous version
 * @param cur  : points to node of current version
 * Time Complexity : O(logn)
 * Space Complexity : O(logn)  */
static void upgrade(node prev, node cur, int low,
                      int high, int idx, int value)
{
    if (idx > high || idx < low || low > high)
        return;
 
    if (low == high)
    {
         
        // Modification in new version
        cur.val = value;
        return;
    }
    int mid = (low + high) / 2;
     
    if (idx <= mid)
    {
         
        // Link to right child of previous version
        cur.right = prev.right;
 
        // Create new node in current version
        cur.left = new node(null, null, 0);
 
        upgrade(prev.left, cur.left, low,
                mid, idx, value);
    }
    else
    {
         
        // Link to left child of previous version
        cur.left = prev.left;
 
        // Create new node for current version
        cur.right = new node(null, null, 0);
 
        upgrade(prev.right, cur.right, mid + 1,
                high, idx, value);
    }
 
    // Calculating data for current version
    // by combining previous version and current
    // modification
    cur.val = cur.left.val + cur.right.val;
}
 
static int query(node n, int low, int high,
                         int l, int r)
{
    if (l > high || r < low || low > high)
        return 0;
    if (l <= low && high <= r)
        return n.val;
         
    int mid = (low + high) / 2;
    int p1 = query(n.left, low, mid, l, r);
    int p2 = query(n.right, mid + 1, high, l, r);
    return p1 + p2;
}
 
// Driver code
public static void main(String[] args)
{
    int A[] = { 1, 2, 3, 4, 5 };
    int n = A.length;
 
    for(int i = 0; i < n; i++)
        arr[i] = A[i];
 
    // Creating Version-0
    node root = new node(null, null, 0);
    build(root, 0, n - 1);
 
    // Storing root node for version-0
    version[0] = root;
 
    // Upgrading to version-1
    version[1] = new node(null, null, 0);
    upgrade(version[0], version[1], 0, n - 1, 4, 1);
 
    // Upgrading to version-2
    version[2] = new node(null, null, 0);
    upgrade(version[1], version[2], 0, n - 1, 2, 10);
 
    // For print
    System.out.print("In version 1 , query(0,4) : ");
    System.out.print(query(version[1], 0, n - 1, 0, 4));
 
    System.out.print("\nIn version 2 , query(3,4) : ");
    System.out.print(query(version[2], 0, n - 1, 3, 4));
 
    System.out.print("\nIn version 0 , query(0,3) : ");
    System.out.print(query(version[0], 0, n - 1, 0, 3));
}
}
 
// This code is contributed by mark_85
 
 

Python3




# Python program to implement persistent segment tree.
 
MAXN = 100
 
# data type for individual node in the segment tree
class Node:
    def __init__(self, left=None, right=None, val=0):
        # stores sum of the elements in node
        self.val = val
        # pointer to left and right children
        self.left = left
        self.right = right
 
# input array
arr = [0] * MAXN
 
# root pointers for all versions
version = [None] * MAXN
 
# Constructs Version-0
# Time Complexity : O(nlogn)
def build(n, low, high):
    if low == high:
        n.val = arr[low]
        return
    mid = (low+high) // 2
    n.left = Node()
    n.right = Node()
    build(n.left, low, mid)
    build(n.right, mid+1, high)
    n.val = n.left.val + n.right.val
 
# Upgrades to new Version
# @param prev : points to node of previous version
# @param cur  : points to node of current version
# Time Complexity : O(logn)
# Space Complexity : O(logn)
def upgrade(prev, cur, low, high, idx, value):
    if idx > high or idx < low or low > high:
        return
 
    if low == high:
        # modification in new version
        cur.val = value
        return
 
    mid = (low+high) // 2
    if idx <= mid:
        # link to right child of previous version
        cur.right = prev.right
 
        # create new node in current version
        cur.left = Node()
 
        upgrade(prev.left,cur.left, low, mid, idx, value)
    else:
        # link to left child of previous version
        cur.left = prev.left
 
        # create new node for current version
        cur.right = Node()
 
        upgrade(prev.right, cur.right, mid+1, high, idx, value)
 
    # calculating data for current version
    # by combining previous version and current
    # modification
    cur.val = cur.left.val + cur.right.val
 
def query(n, low, high, l, r):
    if l > high or r < low or low > high:
        return 0
    if l <= low and high <= r:
        return n.val
    mid = (low+high) // 2
    p1 = query(n.left,low,mid,l,r)
    p2 = query(n.right,mid+1,high,l,r)
    return p1+p2
 
if __name__ == '__main__':
    A = [1,2,3,4,5]
    n = len(A)
 
    for i in range(n):
        arr[i] = A[i]
 
    # creating Version-0
    root = Node()
    build(root, 0, n-1)
 
    # storing root node for version-0
    version[0] = root
 
    # upgrading to version-1
    version[1] = Node()
    upgrade(version[0], version[1], 0, n-1, 4, 1)
 
    # upgrading to version-2
    version[2] = Node()
    upgrade(version[1], version[2], 0, n-1, 2, 5)
 
    # querying in version-0
    print("In version 0 , query(0,3) :",query(version[0], 0, n-1, 0, 3))
 
    # querying in version-1
    print("In version 1 , query(0,4) :",query(version[1], 0, n-1, 0, 4))
 
    # querying in version-2
    print("In version 2 , query(3,4) :",query(version[2], 0, n-1, 3, 4))
 
 

C#




// C# program to implement persistent
// segment tree.
using System;
 
class node
{
     
    // Stores sum of the elements in node
    public int val;
     
    // Reference to left and right children
    public node left, right;
     
    // Required constructors..
    public node()
    {}
 
    // Node constructor for l,r,v
    public node(node l, node r, int v)
    {
        left = l;
        right = r;
        val = v;
    }
}
 
class GFG{
     
// Declaring maximum number
static int MAXN = 100;
 
// Making Node for tree
// Input array
static int[] arr = new int[MAXN];
 
// Root pointers for all versions
static node[] version = new node[MAXN];
 
// Constructs Version-0
// Time Complexity : O(nlogn)
static void build(node n, int low, int high)
{
    if (low == high)
    {
        n.val = arr[low];
        return;
    }
 
    int mid = (low + high) / 2;
    n.left = new node(null, null, 0);
    n.right = new node(null, null, 0);
    build(n.left, low, mid);
    build(n.right, mid + 1, high);
    n.val = n.left.val + n.right.val;
}
 
/* Upgrades to new Version
 * @param prev : points to node of previous version
 * @param cur  : points to node of current version
 * Time Complexity : O(logn)
 * Space Complexity : O(logn)  */
static void upgrade(node prev, node cur, int low,
                      int high, int idx, int value)
{
    if (idx > high || idx < low || low > high)
        return;
         
    if (low == high)
    {
         
        // Modification in new version
        cur.val = value;
        return;
    }
 
    int mid = (low + high) / 2;
     
    if (idx <= mid)
    {
         
        // Link to right child of previous version
        cur.right = prev.right;
         
        // Create new node in current version
        cur.left = new node(null, null, 0);
        upgrade(prev.left, cur.left, low,
                mid, idx, value);
    }
    else
    {
         
        // Link to left child of previous version
        cur.left = prev.left;
         
        // Create new node for current version
        cur.right = new node(null, null, 0);
        upgrade(prev.right, cur.right,
                mid + 1, high, idx, value);
    }
 
    // Calculating data for current version
    // by combining previous version and current
    // modification
    cur.val = cur.left.val + cur.right.val;
}
 
static int query(node n, int low, int high,
                         int l, int r)
{
    if (l > high || r < low || low > high)
        return 0;
         
    if (l <= low && high <= r)
        return n.val;
         
    int mid = (low + high) / 2;
    int p1 = query(n.left, low, mid, l, r);
    int p2 = query(n.right, mid + 1, high, l, r);
    return p1 + p2;
}
 
// Driver code
public static void Main(String[] args)
{
    int[] A = { 1, 2, 3, 4, 5 };
    int n = A.Length;
     
    for(int i = 0; i < n; i++)
        arr[i] = A[i];
     
    // Creating Version-0
    node root = new node(null, null, 0);
    build(root, 0, n - 1);
     
    // Storing root node for version-0
    version[0] = root;
     
    // Upgrading to version-1
    version[1] = new node(null, null, 0);
    upgrade(version[0], version[1], 0,
            n - 1, 4, 1);
     
    // Upgrading to version-2
    version[2] = new node(null, null, 0);
    upgrade(version[1], version[2], 0,
            n - 1, 2, 10);
     
    // For print
    Console.Write("In version 1 , query(0,4) : ");
    Console.Write(query(version[1], 0, n - 1, 0, 4));
     
    Console.Write("\nIn version 2 , query(3,4) : ");
    Console.Write(query(version[2], 0, n - 1, 3, 4));
     
    Console.Write("\nIn version 0 , query(0,3) : ");
    Console.Write(query(version[0], 0, n - 1, 0, 3));
}
}
 
// This code is contributed by sanjeev2552
 
 

Javascript




<script>
 
// JavaScript program to implement persistent
// segment tree.
class node
{
    // Node constructor for l,r,v
    constructor(l, r, v)
    {
        this.left = l;
        this.right = r;
        this.val = v;
    }
}
     
// Declaring maximum number
var MAXN = 100;
 
// Making Node for tree
// Input array
var arr = Array(MAXN);
 
// Root pointers for all versions
var version = Array(MAXN);
 
// Constructs Version-0
// Time Complexity : O(nlogn)
function build(n, low, high)
{
    if (low == high)
    {
        n.val = arr[low];
        return;
    }
 
    var mid = parseInt((low + high) / 2);
    n.left = new node(null, null, 0);
    n.right = new node(null, null, 0);
    build(n.left, low, mid);
    build(n.right, mid + 1, high);
    n.val = n.left.val + n.right.val;
}
 
/* Upgrades to new Version
 * @param prev : points to node of previous version
 * @param cur  : points to node of current version
 * Time Complexity : O(logn)
 * Space Complexity : O(logn)  */
function upgrade(prev, cur, low, high, idx, value)
{
    if (idx > high || idx < low || low > high)
        return;
         
    if (low == high)
    {
         
        // Modification in new version
        cur.val = value;
        return;
    }
 
    var mid = parseInt((low + high) / 2);
     
    if (idx <= mid)
    {
         
        // Link to right child of previous version
        cur.right = prev.right;
         
        // Create new node in current version
        cur.left = new node(null, null, 0);
        upgrade(prev.left, cur.left, low,
                mid, idx, value);
    }
    else
    {
         
        // Link to left child of previous version
        cur.left = prev.left;
         
        // Create new node for current version
        cur.right = new node(null, null, 0);
        upgrade(prev.right, cur.right,
                mid + 1, high, idx, value);
    }
 
    // Calculating data for current version
    // by combining previous version and current
    // modification
    cur.val = cur.left.val + cur.right.val;
}
 
function query(n, low, high, l, r)
{
    if (l > high || r < low || low > high)
        return 0;
         
    if (l <= low && high <= r)
        return n.val;
         
    var mid = parseInt((low + high) / 2);
    var p1 = query(n.left, low, mid, l, r);
    var p2 = query(n.right, mid + 1, high, l, r);
    return p1 + p2;
}
 
// Driver code
var A = [1, 2, 3, 4, 5];
var n = A.length;
 
for(var i = 0; i < n; i++)
    arr[i] = A[i];
 
// Creating Version-0
var root = new node(null, null, 0);
build(root, 0, n - 1);
 
// Storing root node for version-0
version[0] = root;
 
// Upgrading to version-1
version[1] = new node(null, null, 0);
upgrade(version[0], version[1], 0,
        n - 1, 4, 1);
 
// Upgrading to version-2
version[2] = new node(null, null, 0);
upgrade(version[1], version[2], 0,
        n - 1, 2, 10);
 
// For print
document.write("In version 1 , query(0,4) : ");
document.write(query(version[1], 0, n - 1, 0, 4));
 
document.write("<br>In version 2 , query(3,4) : ");
document.write(query(version[2], 0, n - 1, 3, 4));
 
document.write("<br>In version 0 , query(0,3) : ");
document.write(query(version[0], 0, n - 1, 0, 3));
 
 
 
</script>
 
 
Output
In version 1 , query(0,4) : 11 In version 2 , query(3,4) : 5 In version 0 , query(0,3) : 10 

Note: The above problem can also be solved by processing the queries offline by sorting it with respect to the version and answering the queries just after the corresponding update.

Time Complexity: The time complexity will be the same as the query and point update operation in the segment tree as we can consider the extra node creation step to be done in O(1). Hence, the overall Time Complexity per query for new version creation and range sum query will be O(log n).

Auxiliary Space: O(log n) 

 

Related Topic: Segment Tree



Next Article
Segment tree | Efficient implementation

N

Nitish Kumar
Improve
Article Tags :
  • Advanced Data Structure
  • DSA
  • Tree
  • array-range-queries
  • Segment-Tree
Practice Tags :
  • Advanced Data Structure
  • Segment-Tree
  • Tree

Similar Reads

  • Segment Tree
    Segment Tree is a data structures that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tre
    3 min read
  • Segment tree meaning in DSA
    A segment tree is a data structure used to effectively query and update ranges of array members. It's typically implemented as a binary tree, with each node representing a segment or range of array elements. Characteristics of Segment Tree:A segment tree is a binary tree with a leaf node for each el
    2 min read
  • Introduction to Segment Trees - Data Structure and Algorithm Tutorials
    A Segment Tree is used to stores information about array intervals in its nodes. It allows efficient range queries over array intervals.Along with queries, it allows efficient updates of array items.For example, we can perform a range summation of an array between the range L to R in O(Log n) while
    15+ min read
  • Persistent Segment Tree | Set 1 (Introduction)
    Prerequisite : Segment Tree Persistency in Data Structure Segment Tree is itself a great data structure that comes into play in many cases. In this post we will introduce the concept of Persistency in this data structure. Persistency, simply means to retain the changes. But obviously, retaining the
    15+ min read
  • Segment tree | Efficient implementation
    Let us consider the following problem to understand Segment Trees without recursion.We have an array arr[0 . . . n-1]. We should be able to, Find the sum of elements from index l to r where 0 <= l <= r <= n-1Change the value of a specified element of the array to a new value x. We need to d
    12 min read
  • Iterative Segment Tree (Range Maximum Query with Node Update)
    Given an array arr[0 . . . n-1]. The task is to perform the following operation: Find the maximum of elements from index l to r where 0 <= l <= r <= n-1.Change value of a specified element of the array to a new value x. Given i and x, change A[i] to x, 0 <= i <= n-1. Examples: Input:
    14 min read
  • Range Sum and Update in Array : Segment Tree using Stack
    Given an array arr[] of N integers. The task is to do the following operations: Add a value X to all the element from index A to B where 0 ? A ? B ? N-1.Find the sum of the element from index L to R where 0 ? L ? R ? N-1 before and after the update given to the array above.Example: Input: arr[] = {1
    15+ min read
  • Dynamic Segment Trees : Online Queries for Range Sum with Point Updates
    Prerequisites: Segment TreeGiven a number N which represents the size of the array initialized to 0 and Q queries to process where there are two types of queries: 1 P V: Put the value V at position P.2 L R: Output the sum of values from L to R. The task is to answer these queries. Constraints: 1 ? N
    15+ min read
  • Applications, Advantages and Disadvantages of Segment Tree
    First, let us understand why we need it prior to landing on the introduction so as to get why this concept was introduced. Suppose we are given an array and we need to find out the subarray Purpose of Segment Trees: A segment tree is a data structure that deals with a range of queries over an array.
    4 min read
  • Lazy Propagation

    • Lazy Propagation in Segment Tree
      Segment tree is introduced in previous post with an example of range sum problem. We have used the same "Sum of given Range" problem to explain Lazy propagation How does update work in Simple Segment Tree? In the previous post, update function was called to update only a single value in array. Pleas
      15+ min read

    • Lazy Propagation in Segment Tree | Set 2
      Given an array arr[] of size N. There are two types of operations: Update(l, r, x) : Increment the a[i] (l <= i <= r) with value x.Query(l, r) : Find the maximum value in the array in a range l to r (both are included).Examples: Input: arr[] = {1, 2, 3, 4, 5} Update(0, 3, 4) Query(1, 4) Output
      15+ min read

    • Flipping Sign Problem | Lazy Propagation Segment Tree
      Given an array of size N. There can be multiple queries of the following types. update(l, r) : On update, flip( multiply a[i] by -1) the value of a[i] where l <= i <= r . In simple terms, change the sign of a[i] for the given range.query(l, r): On query, print the sum of the array in given ran
      15+ min read

geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences