Pattern Printing question asked in CGI Coding Round
Last Updated : 13 Mar, 2023
Write a program that receives a number as input and prints it in the following format as shown below.
Examples :
Input : n = 3 Output : 1*2*3*10*11*12 --4*5*8*9 ----6*7 Input : n = 4 Output : 1*2*3*4*17*18*19*20 --5*6*7*14*15*16 ----8*9*12*13 ------10*11
Asked in CGI coding round
Approach: The approach is to see the problem, not as a single task but three tasks which, on combining, complete the main task. The three tasks are printing the left-half of the pattern, printing dashes(-), and printing the right-half of the pattern. Combining all three tasks, we would be able to print the pattern.
left-half of pattern 1*2*3* --4*5* ----6* A function printdashes() to print the "-". right-half of pattern 10*11*12 *8*9 7
Below is the implementation.
C++ // C program to print the given pattern #include <stdio.h> // utility function to print "-" in every // row. This will take care of printing // "-" in the start of every row void printdashes(int k) { int i; for (i = 1; i <= k; i++) printf("-"); } // function to print the pattern void pattern(int n){ // variables for vertical left half /* 1*2*3* --4*5* ----6* */ int row, column, dashes = 0; int i, j, dash_counter = 0; int value = 1; // variables for vertical right half /* 10*11*12 *8*9 7 */ int k, l, decrementor = 0; int column_decrementor = 0; int support = n - 1; int temp = ((n * n) + 1); int temp1 = (n * 2) - 1; int z = temp; int tracker; for (i = 1; i <= n; i++) { printdashes(dash_counter); // This part will take care of the vertical // left half of the pattern for (j = 1; j <= (2 * n) - dash_counter; j++) { // Printing the "*" in even positions if (j % 2 == 0) printf("*"); else { printf("%d", value); value++; } } // This part will take care of the vertical // right half of the pattern for (k = 1; k <= (temp1 - decrementor); k++) { // Printing the "*" in even positions if (k % 2 == 0) printf("*"); else { if (k == 1) tracker = temp; printf("%d", temp); temp++; } } decrementor += 2; temp = tracker - support; support--; // In every row, the number of dash counts // is increased by 2 dash_counter += 2; printf("\n"); } } // driver program int main() { int n = 3; pattern(n); return 0; }
Java // Java program to print the given pattern class GFG { // utility function to print "-" in every // row. This will take care of printing // "-" in the start of every row static void printdashes(int k) { int i; for (i = 1; i <= k; i++) System.out.print("-"); } // function to print the pattern static void pattern(int n) { // variables for vertical left half /* 1*2*3* --4*5* ----6* */ int row, column, dashes = 0; int i, j, dash_counter = 0; int value = 1; // variables for vertical right half /* 10*11*12 *8*9 7 */ int k, l, decrementor = 0; int column_decrementor = 0; int support = n - 1; int temp = ((n * n) + 1); int temp1 = (n * 2) - 1; int z = temp; int tracker = 0; for (i = 1; i <= n; i++) { printdashes(dash_counter); // This part will take care of the vertical // left half of the pattern for (j = 1; j <= (2 * n) - dash_counter; j++) { // Printing the "*" in even positions if (j % 2 == 0) System.out.print("*"); else { System.out.print(value); value++; } } // This part will take care of the vertical // right half of the pattern for (k = 1; k <= (temp1 - decrementor); k++) { // Printing the "*" in even positions if (k % 2 == 0) System.out.print("*"); else { if (k == 1) tracker = temp; System.out.print(temp); temp++; } } decrementor += 2; temp = tracker - support; support--; // In every row, the number of dash counts // is increased by 2 dash_counter += 2; System.out.print("\n"); } } // Driver code public static void main(String arg[]) { int n = 3; pattern(n); } } // This code is contributed by Anant Agarwal.
Python3 # Python program to print # the given pattern # utility function to # print "-" in every # row. This will take # care of printing # "-" in the start of every row def printdashes(k): for i in range(1,k+1): print("-",end="") # function to print the pattern def pattern(n): # variables for vertical left half ''' 1*2*3* --4*5* ----6* ''' dashes = 0 dash_counter = 0 value = 1 # variables for vertical right half ''' 10*11*12 *8*9 7 ''' decrementor = 0 column_decrementor = 0 support = n - 1 temp = ((n * n) + 1) temp1 = (n * 2) - 1 z = temp for i in range(1,n+1): printdashes(dash_counter) # This part will take # care of the vertical # left half of the pattern for j in range(1,(((2 * n) - dash_counter)+1)): # Printing the "*" in even positions if (j % 2 == 0): print("*",end="") else: print(value,end="") value=value+1 # This part will take # care of the vertical # right half of the pattern for k in range(1,((temp1 - decrementor)+1)): # Printing the "*" in even positions if (k % 2 == 0): print("*",end="") else: if (k == 1): tracker = temp print(temp,end="") temp=temp + 1 decrementor =decrementor + 2 temp = tracker - support support=support - 1 # In every row, the number of dash counts # is increased by 2 dash_counter =dash_counter + 2 print("") # driver program n = 3 pattern(n) # This code is contributed # by Anant Agarwal.
C# // C# program to print the given pattern using System; class GFG { // utility function to print "-" in every // row. This will take care of printing // "-" in the start of every row static void printdashes(int k) { int i; for (i = 1; i <= k; i++) Console.Write("-"); } // function to print the pattern static void pattern(int n) { // variables for vertical left half /* 1*2*3* --4*5* ----6* */ int i, j, dash_counter = 0; int value = 1; // variables for vertical right half /* 10*11*12 *8*9 7 */ int k, decrementor = 0; int support = n - 1; int temp = ((n * n) + 1); int temp1 = (n * 2) - 1; int tracker = 0; for (i = 1; i <= n; i++) { printdashes(dash_counter); // This part will take care of the vertical // left half of the pattern for (j = 1; j <= (2 * n) - dash_counter; j++) { // Printing the "*" in even positions if (j % 2 == 0) Console.Write("*"); else { Console.Write(value); value++; } } // This part will take care of the vertical // right half of the pattern for (k = 1; k <= (temp1 - decrementor); k++) { // Printing the "*" in even positions if (k % 2 == 0) Console.Write("*"); else { if (k == 1) tracker = temp; Console.Write(temp); temp++; } } decrementor += 2; temp = tracker - support; support--; // In every row, the number of dash counts // is increased by 2 dash_counter += 2; Console.WriteLine(); } } // Driver code public static void Main() { int n = 3; pattern(n); } } // This code is contributed by vt_m.
PHP <?php // PHP program to print the given pattern // function to print the pattern function pattern($n) { // variables for vertical left half $dashes = 0; $dash_counter = 0; $value = 1; // variables for vertical right half $decrementor = 0; $column_decrementor = 0; $support = $n - 1; $temp = (($n * $n) + 1); $temp1 = ($n * 2) - 1; $z = $temp; for ($i = 1; $i <= $n; $i++) { // loop for printing dash for ($dd = 1; $dd <= $dash_counter; $dd++) printf("-"); // This part will take care of the // vertical left half of the pattern for ($j = 1; $j <= (2 * $n) - $dash_counter; $j++) { // Printing the "*" in even // positions if ($j % 2 == 0) printf("*"); else { printf($value); $value++; } } // This part will take care // of the vertical right half // of the pattern for ($k = 1; $k <= ($temp1 - $decrementor); $k++) { // Printing the "*" in even // positions if ($k % 2 == 0) printf("*"); else { if ($k == 1) $tracker = $temp; printf($temp); $temp++; } } $decrementor += 2; $temp = $tracker - $support; $support--; // In every row, the number of // dash counts is increased by 2 $dash_counter += 2; printf("\n"); } } // Driver code $n = 3; pattern($n); // This code is contributed by mits ?>
JavaScript <script> // javascript program to print the given pattern // utility function to print "-" in every // row. This will take care of printing // "-" in the start of every row function printdashes(k) { var i; for (i = 1; i <= k; i++) document.write("-"); } // function to print the pattern function pattern(n) { // variables for vertical left half /* 1*2*3* --4*5* ----6* */ var row, column, dashes = 0; var i, j, dash_counter = 0; var value = 1; // variables for vertical right half /* 10*11*12 *8*9 7 */ var k, l, decrementor = 0; var column_decrementor = 0; var support = n - 1; var temp = ((n * n) + 1); var temp1 = (n * 2) - 1; var z = temp; var tracker = 0; for (i = 1; i <= n; i++) { printdashes(dash_counter); // This part will take care of the vertical // left half of the pattern for (j = 1; j <= (2 * n) - dash_counter; j++) { // Printing the "*" in even positions if (j % 2 == 0) document.write("*"); else { document.write(value); value++; } } // This part will take care of the vertical // right half of the pattern for (k = 1; k <= (temp1 - decrementor); k++) { // Printing the "*" in even positions if (k % 2 == 0) document.write("*"); else { if (k == 1) tracker = temp; document.write(temp); temp++; } } decrementor += 2; temp = tracker - support; support--; // In every row, the number of dash counts // is increased by 2 dash_counter += 2; document.write("<br>"); } } // Driver code var n = 3; pattern(n); // This code is contributed by 29AjayKumar </script>
Output1*2*3*10*11*12 --4*5*8*9 ----6*7
Time Complexity: O(n2)
Auxiliary Space: O(1), As constant extra space is used.
Another approach :
C++ // C++ program to print the given pattern #include <iostream> using namespace std; // function to print the pattern void printPattern(int row) { int x = 1; int z = (row * row) + 1; int col = row == 1 ? 1 : (row * 4) - 1; for(int i = 1; i <= row; i++) { int t = z; for(int j = 1; j <= col - ((i - 1) * 2); j++) { if ((i * 2) - 2 >= j) { cout << "-"; } else { if(col == 1) { cout << x; } else if(j <= col/2 && j % 2 == 1) { cout << x; x++; } else if(j > col/2 && j % 2 == 1) { cout << t; t++; } else { cout << "*"; } } } z = (z - row) + i; cout << "\n"; } } // Driver code int main() { int row = 3; printPattern(row); return 0; } // This code is contributed by shubhamsingh10
C // C program to print the given pattern #include<stdio.h> // function to print the pattern void printPattern(int row) { int x = 1; int z = (row * row) + 1; int col = row == 1 ? 1 : (row * 4) - 1; for(int i = 1; i <= row; i++) { int t = z; for(int j = 1; j <= col - ((i - 1) * 2); j++) { if ((i * 2) - 2 >= j) { printf("-"); } else { if(col == 1) { printf("%d", x); } else if(j <= col/2 && j % 2 == 1) { printf("%d", x); x++; } else if(j > col/2 && j % 2 == 1) { printf("%d", t);; t++; } else { printf("*"); } } } z = (z - row) + i; printf("\n"); } } // Driver code int main() { int row = 3; printPattern(row); return 0; } // This code is contributed by ankurmishra1794
Java // Java program to print the given pattern class GFG { // function to print the pattern static void printPattern(int row) { int x = 1; int z = (row * row) + 1; int col = row == 1 ? 1 : (row * 4) - 1; for(int i = 1; i <= row; i++) { int t = z; for(int j = 1; j <= col -((i - 1) * 2); j++) { if ((i * 2) - 2 >= j) { System.out.print("-"); } else { if(col == 1) { System.out.print(x); } else if(j <= col/2 && j % 2 == 1) { System.out.print(x); x++; } else if(j > col/2 && j % 2 == 1) { System.out.print(t); t++; } else { System.out.print("*"); } } } z = (z - row) + i; System.out.print("\n"); } } // Driver code public static void main(String[] args) { int row = 3; printPattern(row); } } /* This code is contributed by PrinciRaj1992 */
Python3 # Python3 program to print the given pattern # Function to print the pattern def printPattern(row): x = 1 z = (row * row) + 1 if row == 1: col = 1 else: col = (row * 4) - 1 for i in range(1, row + 1): t = z for j in range(1, col - ((i - 1) * 2) + 1): if ((i * 2) - 2 >= j): print("", end = "-") else: if (col == 1): print(x, end = "") elif (j <= col / 2 and j % 2 == 1): print(x, end = "") x += 1 elif (j > col / 2 and j % 2 == 1): print(t, end = "") t += 1 else: print("*", end = "") z = (z - row) + i print() # Driver code row = 3 printPattern(row) # This code is contributed by shivani
C# // C# program to print the given pattern using System; class GFG { // function to print the pattern static void printPattern(int row) { int x = 1; int z = (row * row) + 1; int col = row == 1 ? 1 : (row * 4) - 1; for(int i = 1; i <= row; i++) { int t = z; for(int j = 1; j <= col -((i - 1) * 2); j++) { if ((i * 2) - 2 >= j) { Console.Write("-"); } else { if(col == 1) { Console.Write(x); } else if(j <= col/2 && j % 2 == 1) { Console.Write(x); x++; } else if(j > col/2 && j % 2 == 1) { Console.Write(t); t++; } else { Console.Write("*"); } } } z = (z - row) + i; Console.Write("\n"); } } // Driver code public static void Main(String[] args) { int row = 3; printPattern(row); } } // This code is contributed by 29AjayKumar
JavaScript <script> // javascript program to print the given pattern // function to print the pattern function printPattern(row) { var x = 1; var z = (row * row) + 1; var col = row == 1 ? 1 : (row * 4) - 1; for(var i = 1; i <= row; i++) { var t = z; for(var j = 1; j <= col -((i - 1) * 2); j++) { if ((i * 2) - 2 >= j) { document.write("-"); } else { if(col == 1) { document.write(x); } else if(j <= col/2 && j % 2 == 1) { document.write(x); x++; } else if(j > col/2 && j % 2 == 1) { document.write(t); t++; } else { document.write("*"); } } } z = (z - row) + i; document.write("<br>"); } } // Driver code var row = 3; printPattern(row); // This code is contributed by 29AjayKumar </script>
Output1*2*3*10*11*12 --4*5*8*9 ----6*7
Time Complexity: O(n2)
Auxiliary Space: O(1), As constant extra space is used.
Another approach :
C++ #include <bits/stdc++.h> using namespace std; void pattern(int n) { int size = n * (n + 1); // prev1 will be used to keep track of last number // printed in left half of pattern int prev1 = 0; // prev2 will be used to keep track of last number // printed in right half of pattern int prev2 = size; for (int i = 0; i < n; i++) { // print the '-' for (int j = 0; j < 2 * i; j++) cout << "-"; // l1 to store numbers of left half to be printed vector<int> l1; for (int j = prev1 + 1; j <= prev1 + n - i; j++) l1.push_back(j); // l2 to store numbers of right half to be printed vector<int> l2; for (int j = prev2 - (n - i) + 1; j <= prev2; j++) l2.push_back(j); // combine l1 and l2 and print the list separated by * for (int j = 0; j < l1.size(); j++) cout << l1[j] << "*"; for (int j = 0; j < l2.size(); j++) cout << l2[j] << "*"; cout << endl; // decrease prev2 and increase prev1 prev2 -= (n - i); prev1 += (n - i); } } // driver program int main() { int n = 3; pattern(n); return 0; } // This code is contributed by poojaagarwal2.
Java import java.util.ArrayList; import java.util.List; public class Main { public static void pattern(int n) { int size = n * (n + 1); // prev1 will be used to keep track of last number // printed in left half of pattern int prev1 = 0; // prev2 will be used to keep track of last number // printed in right half of pattern int prev2 = size; for (int i = 0; i < n; i++) { // print the '-' for (int j = 0; j < 2 * i; j++) System.out.print("-"); // l1 to store numbers of left half to be // printed List<Integer> l1 = new ArrayList<>(); for (int j = prev1 + 1; j <= prev1 + n - i; j++) l1.add(j); // l2 to store numbers of right half to be // printed List<Integer> l2 = new ArrayList<>(); for (int j = prev2 - (n - i) + 1; j <= prev2; j++) l2.add(j); // combine l1 and l2 and print the list // separated by * for (int j = 0; j < l1.size(); j++) System.out.print(l1.get(j) + "*"); for (int j = 0; j < l2.size(); j++) System.out.print(l2.get(j) + "*"); System.out.println(); // decrease prev2 and increase prev1 prev2 -= (n - i); prev1 += (n - i); } } public static void main(String[] args) { int n = 3; pattern(n); } }
Python3 def pattern(n): size = n*(n+1) # prev1 will be used to keep track of last number # printed in left half of pattern prev1 = 0 # prev2 will be used to keep track of last number # printed in right half of pattern prev2 = size for i in range(n): # print the '-' print('-'*(2*i), end = '') # l1 to store numbers of left half to be printed l1 = [j for j in range(prev1+1, prev1+n-i+1)] # l2 to store numbers of right half to be printed l2 = [j for j in range(prev2-(n-i)+1,prev2+1)] # combine l1 and l2 and print the list separated by * print(*l1+l2, sep = '*') # decrease prev2 and increase prev1 prev2 -= (n-i) prev1 += (n-i) # driver program n = 3 pattern(n) # This code is contributed # by Akash Jain (ultrainstinct).
C# //C# code for the above approach using System; using System.Collections.Generic; class GFG { public static void pattern(int n) { int size = n * (n + 1); // prev1 will be used to keep track of last number // printed in left half of pattern int prev1 = 0; // prev2 will be used to keep track of last number // printed in right half of pattern int prev2 = size; for (int i = 0; i < n; i++) { // print the '-' for (int j = 0; j < 2 * i; j++) Console.Write("-"); // l1 to store numbers of left half to be // printed List<int> l1 = new List<int>(); for (int j = prev1 + 1; j <= prev1 + n - i; j++) l1.Add(j); // l2 to store numbers of right half to be // printed List<int> l2 = new List<int>(); for (int j = prev2 - (n - i) + 1; j <= prev2; j++) l2.Add(j); // combine l1 and l2 and print the list // separated by * for (int j = 0; j < l1.Count; j++) Console.Write(l1[j] + "*"); for (int j = 0; j < l2.Count; j++) Console.Write(l2[j] + "*"); Console.WriteLine(); // decrease prev2 and increase prev1 prev2 -= (n - i); prev1 += (n - i); } } public static void Main(string[] args) { int n = 3; pattern(n); } }
JavaScript function pattern( n) { let size = n * (n + 1); // prev1 will be used to keep track of last number // printed in left half of pattern let prev1 = 0; // prev2 will be used to keep track of last number // printed in right half of pattern let prev2 = size; for (let i = 0; i < n; i++) { // print the '-' for (let j = 0; j < 2 * i; j++) console.log( "-"); // l1 to store numbers of left half to be printed let l1=[]; for (let j = prev1 + 1; j <= prev1 + n - i; j++) l1.push(j); // l2 to store numbers of right half to be printed let l2=[]; for (let j = prev2 - (n - i) + 1; j <= prev2; j++) l2.push(j); // combine l1 and l2 and print the list separated by * for (let j = 0; j < l1.length; j++) console.log( l1[j] + "*"); for (let j = 0; j < l2.length; j++) console.log( l2[j] + "*"); console.log("<br>"); // decrease prev2 and increase prev1 prev2 -= (n - i); prev1 += (n - i); } } // driver program let n = 3; pattern(n); // This code is contributed by ratiagrawal.
Output1*2*3*10*11*12* --4*5*8*9* ----6*7*
Time Complexity: O(n2)
Auxiliary Space: O(1)
As constant extra space is used.
Another approach :
C++ #include <algorithm> #include <iostream> #include <string> #include <vector> using namespace std; int main() { int n = 4; int temp_number = (n * n) + n; int counter = 1; // loop through each row of the pattern for (int i = 0; i < n; i++) { vector<int> temp_list; // loop through each column in the current row for (int j = 0; j < n - i; j++) { // generate two numbers and add them to the // temp_list temp_list.push_back(counter); temp_list.push_back(temp_number - counter + 1); counter += 1; } // sort the numbers in the current row in ascending // order sort(temp_list.begin(), temp_list.end()); // print the appropriate number of dashes before the // row for (int k = 0; k < i; k++) { cout << "--"; } // print the numbers in the current row, separated // by asterisks for (int num : temp_list) { cout << num; if (num != temp_list.back()) { cout << "*"; } } cout << endl; } return 0; } // This code is contributed by divyansh2212
Java import java.util.ArrayList; import java.util.Collections; public class Main { public static void main(String[] args) { int n = 4; int temp_number = (n * n) + n; int counter = 1; // loop through each row of the pattern for (int i = 0; i < n; i++) { ArrayList<Integer> temp_list = new ArrayList<Integer>(); // loop through each column in the current row for (int j = 0; j < n - i; j++) { // generate two numbers and add them to the // temp_list temp_list.add(counter); temp_list.add(temp_number - counter + 1); counter += 1; } // sort the numbers in the current row in // ascending order Collections.sort(temp_list); // print the appropriate number of dashes before // the row for (int k = 0; k < i; k++) { System.out.print("--"); } // print the numbers in the current row, // separated by asterisks for (int num : temp_list) { System.out.print(num); if (num != temp_list.get(temp_list.size() - 1)) { System.out.print("*"); } } System.out.println(); } } }
Python3 n = 4 temp_number = (n*n)+n counter = 1 for i in range(n): temp_list = [] for j in range(n-i): temp_list.append(counter) temp_list.append(temp_number-counter+1) counter += 1 temp_list.sort() temp_list = [str(each) for each in temp_list] [print("--", end="") for k in range(i)] print("*".join(temp_list))
JavaScript let n = 4; let temp_number = n * n + n; let counter = 1; // loop through each row of the pattern for (let i = 0; i < n; i++) { let temp_list = []; // loop through each column in the current row for (let j = 0; j < n - i; j++) { // generate two numbers and add them to the temp_list temp_list.push(counter); temp_list.push(temp_number - counter + 1); counter += 1; } // sort the numbers in the current row in ascending order temp_list.sort(function (a, b) { return a - b; }); // print the appropriate number of dashes before the row let temp = ""; for (let k = 0; k < i; k++) { temp = temp+ "--"; } // print the numbers in the current row, separated by asterisks for (let num of temp_list) { temp= temp+ num.toString(); if (num != temp_list[temp_list.length - 1]) { temp = temp +"*"; } } console.log(temp); }
C# // C# code implementation for the above approach using System; using System.Collections.Generic; using System.Linq; public class GFG { static public void Main() { // Code int n = 4; int temp_number = (n * n) + n; int counter = 1; // loop through each row of the pattern for (int i = 0; i < n; i++) { List<int> temp_list = new List<int>(); // loop through each column in the current row for (int j = 0; j < n - i; j++) { // generate two numbers and add them to the // temp_list temp_list.Add(counter); temp_list.Add(temp_number - counter + 1); counter += 1; } // sort the numbers in the current row in // ascending order temp_list.Sort(); // print the appropriate number of dashes before // the row for (int k = 0; k < i; k++) { Console.Write("--"); } // print the numbers in the current row, // separated by asterisks for (int idx = 0; idx < temp_list.Count; idx++) { Console.Write(temp_list[idx]); if (temp_list[idx] != temp_list.Last()) { Console.Write("*"); } } Console.WriteLine(); } } } // This code is contributed by karthik.
Output1*2*3*4*17*18*19*20 --5*6*7*14*15*16 ----8*9*12*13 ------10*11
Time Complexity: O(n2)
Auxiliary Space: O(1)
As constant extra space is used.
Similar Reads
Getting Started with Printing Patterns in Programming Printing patterns in programming is a fun and creative way to enhance your coding skills. Whether you are a beginner or an experienced programmer, mastering pattern printing can help you understand logic, loops, and problem-solving techniques in a visual manner. In this article, we will explore the
1 min read
Pattern Printing Problems In many interviews star, number, and character patterns are the Most Asked Pattern Programs to check your logical and coding skills. Pattern printing programs not only improve your understanding of loops but also sharpen your coding efficiency and creativity. To solve a pattern problem, first identi
1 min read
Programs to print Interesting Patterns Program to print the following pattern: Examples : Input : 5Output:* * * * * * * * * ** * * * * * * ** * * * * ** * * ** ** ** * * ** * * * * ** * * * * * * ** * * * * * * * * *This program is divided into four parts.C++// C++ program to print // the given pattern #include<iostream> using name
15+ min read
Difference between Java Servlet and CGI The world has changed into a mobile-first era but even today, none of the applications could emerge as effective as the web-based apps. Surfacing on top of this is the prevalence of progressive web apps that perform functions identical to mobile apps. In this article, we will understand the differen
3 min read
Program for triangular patterns of alphabets Pattern printing has always been an interesting topic in programming languages. It emphasizes the usage of inner and outer loops in nested loops and creates beautiful patterns from them. Below are given some patterns using alphabets. Our task is to write programs for the below-given patterns, such t
13 min read