Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • Numpy exercise
  • pandas
  • Matplotlib
  • Data visulisation
  • EDA
  • Machin Learning
  • Deep Learning
  • NLP
  • Data science
  • ML Tutorial
  • Computer Vision
  • ML project
Open In App
Next Article:
numpy.all() in Python
Next article icon

numpy.sign() in Python

Last Updated : 03 Oct, 2019
Comments
Improve
Suggest changes
Like Article
Like
Report

numpy.sign(array [, out]) function is used to indicate the sign of a number element-wise.
For integer inputs, if array value is greater than 0 it returns 1, if array value is less than 0 it returns -1, and if array value 0 it returns 0.

Syntax: numpy.sign()

Parameters :
array : [array_like] Input values.
out : [ndarray, optional] Output array placed with result.

Return : [ndarray] Returns the sign of array. If an array is scalar then the sign of array will be scalar.

Code 1 :




# Python Program illustrating
# numpy.sign() method
  
# importing numpy
import numpy as geek  
  
# input arrays    
array1 = [1, 0, -13]
array2 =  [-1, 0, 15]
  
# print the input arrays  
print ("input array1 : ", array1)
print ("input array2 : ", array2)
  
# determine the sign of integer numbers in an array  
print ("\nCheck sign of array1 : ", geek.sign(array1))
print ("\nCheck sign of array2 : ", geek.sign(array2)) 
 
 

Output :

  array1 :  [1, 0, -13]  array2 :  [-1, 0, 15]    Check sign of array1 :  [ 1  0 -1]    Check sign of array2 :  [-1  0  1]    

Code 2 :




# Python Program illustrating
# numpy.sign() method
  
# importing numpy  
import numpy as geek 
  
# determine the sign of complex number
print ("\n Check sign of complex input1 : ", geek.sign(7-3j))
print ("\n Check sign of complex input2 : ", geek.sign(-7 + 3j)) 
 
 

Output :

   Check sign of complex input1 :  (1+0j)     Check sign of complex input2 :  (-1+0j)   


Next Article
numpy.all() in Python
author
sanjoy_62
Improve
Article Tags :
  • Python
  • Python-numpy
Practice Tags :
  • python

Similar Reads

  • numpy.signbit() in Python
    numpy.signbit(array, out = None, where = True, casting = ‘same_kind’, order = ‘K’, dtype = None) : This mathematical function helps user to element - wise check whether the signbit is set or not. Parameters : array : [array_like]Input array or object whose elements, we need to check. out : [ndarray,
    2 min read
  • numpy.sqrt() in Python
    numpy.sqrt() in Python is a function from the NumPy library used to compute the square root of each element in an array or a single number. It returns a new array of the same shape with the square roots of the input values. The function handles both positive and negative numbers, returning NaN for n
    2 min read
  • numpy.subtract() in Python
    numpy.subtract() function is used when we want to compute the difference of two array.It returns the difference of arr1 and arr2, element-wise. Syntax : numpy.subtract(arr1, arr2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj], ufunc 'subtract
    4 min read
  • numpy.any() in Python
    The numpy.any() function tests whether any array elements along the mentioned axis evaluate to True. Syntax : numpy.any(a, axis = None, out = None, keepdims = class numpy._globals._NoValue at 0x40ba726c) Parameters : array :[array_like]Input array or object whose elements, we need to test. axis : [i
    3 min read
  • numpy.all() in Python
    The numpy.all() function tests whether all array elements along the mentioned axis evaluate to True. Syntax: numpy.all(array, axis = None, out = None, keepdims = class numpy._globals._NoValue at 0x40ba726c) Parameters : array :[array_like]Input array or object whose elements, we need to test. axis :
    3 min read
  • numpy.fabs() in Python
    numpy.fabs() function is used to compute the absolute values element-wise. This function returns the absolute values (positive magnitude) of the data in arr. It always return absolute values in floats. Syntax : numpy.fabs(arr, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, u
    2 min read
  • numpy.isnan() in Python
    The numpy.isnan() function tests element-wise whether it is NaN or not and returns the result as a boolean array. Syntax : numpy.isnan(array [, out]) Parameters : array : [array_like]Input array or object whose elements, we need to test for infinity out : [ndarray, optional]Output array placed with
    2 min read
  • numpy.isinf() in Python
    The numpy.isinf() function tests element-wise whether it is +ve or -ve infinity or not return the result as a boolean array. Syntax: numpy.isinf(array [, out]) Parameters : array : [array_like]Input array or object whose elements, we need to test for infinity out : [ndarray, optional]Output array pl
    2 min read
  • numpy.angle() in Python
    numpy.angle() function is used when we want to compute the angle of the complex argument. A complex number is represented by “ x + yi " where x and y are real number and i= (-1)^1/2. The angle is calculated by the formula tan-1(x/y). Syntax : numpy.angle(z, deg=0) Parameters : z : [array_like] A com
    2 min read
  • numpy.invert() in Python
    numpy.invert() function is used to Compute the bit-wise Inversion of an array element-wise. It computes the bit-wise NOT of the underlying binary representation of the integers in the input arrays. For signed integer inputs, the two’s complement is returned. In a two’s-complement system negative num
    2 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences