Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
    • Practice Coding Problems
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Numpy exercise
  • pandas
  • Matplotlib
  • Data visulisation
  • EDA
  • Machin Learning
  • Deep Learning
  • NLP
  • Data science
  • ML Tutorial
  • Computer Vision
  • ML project
Open In App
Next Article:
numpy.poly1d() in Python
Next article icon

numpy.poly1d() in Python

Last Updated : 09 Aug, 2022
Comments
Improve
Suggest changes
Like Article
Like
Report

The numpy.poly1d() function helps to define a polynomial function. It makes it easy to apply "natural operations" on polynomials.

Syntax: numpy.poly1d(arr, root, var) Parameters : arr : [array_like] The polynomial coefficients are given in decreasing order of powers. If the second parameter (root) is set to True then array values are the roots of the polynomial equation. root : [bool, optional] True means polynomial roots. Default is False. var : variable like x, y, z that we need in polynomial [default is x]. Arguments : c : Polynomial coefficient. coef : Polynomial coefficient. coefficients : Polynomial coefficient. order : Order or degree of polynomial. o : Order or degree of polynomial. r : Polynomial root. roots : Polynomial root. Return: Polynomial and the operation applied

For example: poly1d(3, 2, 6) = 3x2 + 2x + 6 poly1d([1, 2, 3], True) = (x-1)(x-2)(x-3) = x3 - 6x2 + 11x -6

Code 1 : Explaining poly1d() and its argument 

Python3
# Python code explaining # numpy.poly1d()  # importing libraries import numpy as np  # Constructing polynomial p1 = np.poly1d([1, 2]) p2 = np.poly1d([4, 9, 5, 4])  print ("P1 : ", p1) print ("\n p2 : \n", p2)  # Solve for x = 2 print ("\n\np1 at x = 2 : ", p1(2)) print ("p2 at x = 2 : ", p2(2))  # Finding Roots print ("\n\nRoots of P1 : ", p1.r) print ("Roots of P2 : ", p2.r)  # Finding Coefficients print ("\n\nCoefficients of P1 : ", p1.c) print ("Coefficients of P2 : ", p2.coeffs)  # Finding Order print ("\n\nOrder / Degree of P1 : ", p1.o) print ("Order / Degree of P2 : ", p2.order) 

Output :

P1 :    1 x + 2   p2 :      3     2 4 x + 9 x + 5 x + 4   p1 at x = 2 :  4 p2 at x = 2 :  82   Roots of P1 :  [-2.] Roots of P2 :  [-1.86738371+0.j         -0.19130814+0.70633545j -0.19130814-0.70633545j]   Coefficients of P1 :  [1 2] Coefficients of P2 :  [4 9 5 4]   Order / Degree of P1 :  1 Order / Degree of P2 :  3

  Code 2 : Basic mathematical operation on polynomial 

Python3
# Python code explaining # numpy.poly1d()  # importing libraries import numpy as np  # Constructing polynomial p1 = np.poly1d([1, 2]) p2 = np.poly1d([4, 9, 5, 4])  print ("P1 : ", p1) print ("\n p2 : \n", p2)  print ("\n\np1 ^ 2 : \n", p1**2) print ("p2 ^ 2 : \n", np.square(p2))  p3 = np.poly1d([1, 2], variable = 'y') print ("\n\np3 : ", p3)   print ("\n\np1 * p2 : \n", p1 * p2) print ("\nMultiplying two polynimials : \n",         np.poly1d([1, -1]) * np.poly1d([1, -2])) 

Output : 

P1 :    1 x + 2   p2 :      3     2 4 x + 9 x + 5 x + 4   p1 ^ 2 :      2 1 x + 4 x + 4 p2 ^ 2 :   [16 81 25 16]   p3 :    1 y + 2   p1 * p2 :      4      3      2 4 x + 17 x + 23 x + 14 x + 8  Multiplying two polynomials :      2 1 x - 3 x + 2

Next Article
numpy.poly1d() in Python

M

mohit gupta_omg :)
Improve
Article Tags :
  • Python
  • Python-numpy
  • Python numpy-polynomials
Practice Tags :
  • python

Similar Reads

    numpy.poly() in Python
    The numpy.poly() function in the Sequence of roots of the polynomial returns the coefficient of the polynomial. Syntax :numpy.poly(seq) Parameters : Seq : sequence of roots of the polynomial roots, or a matrix of roots. Return: 1D array having coefficients of the polynomial from the highest degree t
    2 min read
    numpy.polydiv() in Python
    The numpy.polydiv() method evaluates the division of two polynomials and returns the quotient and remainder of the polynomial division. Syntax : numpy.polydiv(p1, p2) Parameters : p1 : [array_like or poly1D]Coefficients of dividend polynomial. p2 : [array_like or poly1D]Coefficients of divisor polyn
    1 min read
    numpy.polyder() in Python
    The numpy.polyder() method evaluates the derivative of a polynomial with specified order. Syntax :numpy.polyder(p, m) Parameters : p : [array_like or poly1D]the polynomial coefficients are given in decreasing order of powers. If the second parameter (root) is set to True then array values are the ro
    2 min read
    numpy.polyadd() in Python
    numpy.polyadd() : This function helps to find the sum of two polynomials and then returning the result as a polynomial. Each input polynomial must be a sequence of polynomial coefficients, from highest to lowest degree. Parameters : p1 : Input polynomial 1 p2 : Input polynomial 2 Return : Sum of pol
    1 min read
    numpy.polyval() in Python
    numpy.polyval(p, x) method evaluates a polynomial at specific values. If 'N' is the length of polynomial 'p', then this function returns the value Parameters : p : [array_like or poly1D] polynomial coefficients are given in decreasing order of powers. If the second parameter (root) is set to True th
    2 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences