Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • Numpy exercise
  • pandas
  • Matplotlib
  • Data visulisation
  • EDA
  • Machin Learning
  • Deep Learning
  • NLP
  • Data science
  • ML Tutorial
  • Computer Vision
  • ML project
Open In App
Next Article:
numpy.nanmin() in Python
Next article icon

numpy.nonzero() in Python

Last Updated : 28 Nov, 2018
Comments
Improve
Suggest changes
Like Article
Like
Report

numpy.nonzero()function is used to Compute the indices of the elements that are non-zero.

It returns a tuple of arrays, one for each dimension of arr, containing the indices of the non-zero elements in that dimension.
The corresponding non-zero values in the array can be obtained with arr[nonzero(arr)] . To group the indices by element, rather than dimension we can use transpose(nonzero(arr)).

Syntax : numpy.nonzero(arr)

Parameters :
arr : [array_like] Input array.

Return : [tuple_of_arrays] Indices of elements that are non-zero.

Code #1 : Working




# Python program explaining
# nonzero() function
  
import numpy as geek
arr = geek.array([[0, 8, 0], [7, 0, 0], [-5, 0, 1]])
  
print ("Input  array : \n", arr)
    
out_tpl = geek.nonzero(arr)
print ("Indices of non zero elements : ", out_tpl) 
 
 

Output :

Input array :
[[ 0 8 0]
[ 7 0 0]
[-5 0 1]]
Indices of non zero elements : (array([0, 1, 2, 2], dtype=int64), array([1, 0, 0, 2], dtype=int64))

 
Code #2 :




# Python program for getting
# The corresponding non-zero values:
out_arr = arr[geek.nonzero(arr)]
  
print ("Output array of non-zero number: ", out_arr) 
 
 

Output :

Output array of non-zero number:  [ 8  7 -5  1]  

 
Code #3 :




# Python program for grouping the indices
# by element, rather than dimension
  
out_ind = geek.transpose(geek.nonzero(arr))
  
print ("indices of non-zero number: \n", out_ind) 
 
 

Output :

indices of non-zero number:    [[0 1]   [1 0]   [2 0]   [2 2]]  


Next Article
numpy.nanmin() in Python
author
jana_sayantan
Improve
Article Tags :
  • Python
  • Python numpy-Indexing
  • Python-numpy
Practice Tags :
  • python

Similar Reads

  • numpy.nanprod() in Python
    numpy.nanprod() function is used when we want to compute the product of array elements over a given axis treating NaNs as ones. One is returned for slices that are all-NaN or empty. Syntax : numpy.nanprod(arr, axis=None, dtype=None, out=None, keepdims='class numpy._globals._NoValue'). Parameters : a
    2 min read
  • numpy.isnan() in Python
    The numpy.isnan() function tests element-wise whether it is NaN or not and returns the result as a boolean array. Syntax : numpy.isnan(array [, out]) Parameters : array : [array_like]Input array or object whose elements, we need to test for infinity out : [ndarray, optional]Output array placed with
    2 min read
  • numpy.flatnonzero() in Python
    numpy.flatnonzero()function is used to Compute indices that are non-zero in the flattened version of arr. Syntax : numpy.flatnonzero(arr) Parameters : arr : [array_like] Input array. Return : ndarray Output array, containing the indices of the elements of arr.ravel() that are non-zero. Code #1 : Wor
    1 min read
  • numpy.nansum() in Python
    numpy.nansum()function is used when we want to compute the sum of array elements over a given axis treating Not a Numbers (NaNs) as zero. Syntax : numpy.nansum(arr, axis=None, dtype=None, out=None, keepdims='no value') Parameters : arr : [array_like] Array containing numbers whose sum is desired. If
    3 min read
  • numpy.nanmin() in Python
    numpy.nanmin()function is used when to returns minimum value of an array or along any specific mentioned axis of the array, ignoring any Nan value. Syntax : numpy.nanmin(arr, axis=None, out=None) Parameters : arr :Input array. axis :Axis along which we want the min value. Otherwise, it will consider
    2 min read
  • Numpy count_nonzero method | Python
    numpy.count_nonzero() function counts the number of non-zero values in the array arr. Syntax : numpy.count_nonzero(arr, axis=None) Parameters : arr : [array_like] The array for which to count non-zeros. axis : [int or tuple, optional] Axis or tuple of axes along which to count non-zeros. Default is
    1 min read
  • numpy.isneginf() in Python
    The numpy.isneginf() function tests element-wise whether it is negative infinity or not, and returns the result as a boolean array. Syntax : numpy.isneginf(array, y = None) Parameters : array : [array_like]Input array or object whose elements, we need to test for infinity. y : [array_like]A boolean
    2 min read
  • numpy.isposinf() in Python
    The numpy.isposinf() function tests element-wise whether it is positive infinity or not and returns the result as a boolean array. Syntax : numpy.isposinf(array, y = None) Parameters: array : [array_like]Input array or object whose elements, we need to test for infinity. y : [array_like]A boolean ar
    2 min read
  • numpy.negative() in Python
    numpy.negative() function is used when we want to compute the negative of array elements. It returns element-wise negative value of an array or negative value of a scalar. Syntax : numpy.negative(arr, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, ext
    2 min read
  • numpy.isfinite() in Python
    The numpy.isfinite() function tests element-wise whether it is finite or not(not infinity or not Not a Number) and return the result as a boolean array. Syntax : numpy.isfinite(array [, out]) Parameters : array : [array_like]Input array or object whose elements, we need to test for infinity out : [n
    2 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences